
2500 A.D. Z80 Macro Assembler - Version 4.02 Table of Contents

Table of Contents

Introduction ... 1 - 1

Operating Instructions 1 - 2

Prompt Mode .. 1 - 2

Command Line Mode ... 1 -4

System Defaults 1 - 9

Assembler ... 1 - 9

Linker 1 - 9

Librarian .. 1 - 9

Assembler Error Processing ... 1 -10

Assembler Run Time Commands ... 1 - 11

Assembly Language Syntax ... 1 - 12

Number Base Designations .. 1 - 12

Program Comments .. 1 - 12

Program Counter .. 1 - 13

Labels ... 1 -13

Local Labels ... 1 - 13

High Byte .. 1-14

Low Byte ... 1-14

Upper / Lower Case .. 1-14

Addressing Modes .. 1 - 15

Immediate ... 1 -15

Register .. 1 -15

Register Indirect ... 1-15

Direct Addressing ... 1 - 16

Indexed ... 1 -16
Relative

 ..

Assembler Directives ... 1 -17

Storage Control 1 - 17

ORG .. 1-17

ORIGIN .. 1-17

END ... 1-17
ASCII

 ..

DB .. 1-18

FCB ... 1-18

DEFB ... 1-18

BYTE ... 1-18

2500 A.D. Z80 Macro Assembler - Version 4.02 Table of Contents

STRING .. 1-18

DW .. 1-18

FDB .. 1-18

DEFW ... 1-18

UNORD .. 1-18

LONG ... 1-19

LONGW .. 1-19

UNORD .. 1-19

FCC .. 1-19

DC .. 1-19

DS ... 1-19

RMB .. 1-19

DEFS .. 1-19

FLOAT .. 1 - 20

DOUBLE ... 1 - 20

BLKB .. 1-20

BLKW ... 1-21

BLKL ... 1-21

Definition Control .. 1 - 22

EQU .. 1-22

EQUAL ... 1 - 22

VAR .. 1-22

DEFL .. 1-22

LXHAR .. 1 - 22

MACRO .. 1-22

ENDM ... 1-22

MACEND .. 1-22

MACEXIT .. 1-23

MACDEUM ... 1-23

XDEF .. 1-23

GLOBAL ... 1 - 23

PUBLIC ... 1 -23

GLOBALS ON .. 1 - 24

GLOBALS OFF ... 1 - 24

XREF .. 1-24

EXTERN ... 1-24

EXTERNAL ... 1-24

ASK .. 1-24

Assembly Mode ... 1 - 25

II

2500 A.D. Z80 Macro Assembler - Version 4.02 Table of Contents

SECTION ... 1 -25

ENDS .. 1-25

ABSOLUTE .. 1 -26

RELATIVE ... 1 - 26

RADIX ... 1 - 26

INCLUDE ... 1 - 26

SPACES ON ... 1-27

SPACES OFF .. 1-27

TWOCHAR ON ... 1-27

TWOCHAR OFF .. 1-27

MODULE ... 1 - 27

ENDMOD .. 1-29

COMMENT .. 1 - 29

BIT7 ON .. 1-29

BIT7 OFF ... 1 - 29

Conditional Assembly ... 1 - 30

IFZ ... 1-30

IFE ... 1-30

IF ... 1-30

IFN ... 1-30

IFNZ .. 1-30

COND .. 1-30

IFTRUE ... 1 - 30

IFNFALSE .. 1 -30

IFNTRUE ... 1 - 30

IFFALSE .. 1 - 30

IFDEF .. 1 -31

IFNDEF .. 1-31

IFSAME .. 1 - 31

IFNDIFF ... 1 -31

IFNSAME .. 1 - 32

IFDIFF ... 1 - 32

IFEXT .. 1 - 32

IFNEXT .. 1-32

IFABS ... 1 -33

IFNREL .. 1-33

IFREL .. 1 - 33

IFNABS .. 1-33

IFMA ... 1-33

III

2500 A.D. Z80 Macro Assembler - Version 4.02 Table of Contents

IFNMA ... 1 - 33

ELSE ... 1-34

ENDC ... 1-34

ENDIF .. 1 - 34

IFCLEAR .. 1 - 34

EXIT ... 1-35

Assembly Listing Control ... 1 - 36

LIST ON ... 1-36

LIST .. 1-36

LIST OFF .. 1-36

NOLIST .. 1 - 36

NLIST ... 1-36

MACLIST ON .. 1-36

MLIST .. 1 - 36

MACLIST OFF .. 1 - 36

MNLIST .. 1 -36

CONDLIST ON .. 1 - 36

CONDL1ST OFF ... 1 - 37

ASCLIST ON ... 1 - 37

ASCLIST OFF .. 1 - 37

PW .. 1-37

PL .. 1-37

TOP ... 1-37

PASS1 ON .. 1 - 38

PASS1 OFF .. 1 - 38

PAG .. 1-38

PAGE .. 1-38

EJECT ... 1 - 38

NAM ... 1-38

TTL ... 1-38

TITLE ... 1 - 38

HEADING .. 1 - 38

STTL ... 1-39

SUBTITLE ... 1 - 39

SUBHL ... 1 - 39

Linker Control ... 1-40

F1LLCHAR .. 1 - 40

RECS1ZE ... 1 - 40

SYMBOLS ... 1 - 40

IV
2500 A.D. Z80 Macro Assembler - Version 4.02 Table of Contents

IFNMA ... 1 -33

ELSE .. 1-34

ENDC ... 1-34

ENDIF ... 1-34

I FCLEAR .. 1 -34

EXIT .. 1-35

Assembly Listing Control .. 1 - 36

LIST ON .. 1-36

LIST .. 1-36

LIST OFF .. 1-36

NOLIST .. 1 -36

NLIST .. 1 -36

MACLIST ON .. 1 - 36

MLIST ... 1 - 36

MACLIST OFF .. 1 - 36

MNLIST .. 1 - 36

CONDLIST ON ... 1 - 36

CONDLIST OFF ... 1 - 37

ASCLIST ON .. 1 - 37

ASCLIST OFF .. 1 - 37

PW .. 1-37

PL ... 1-37

TOP .. 1-37

PASS1 ON .. 1 - 38

PASS1 OFF .. 1 - 38

PAG .. 1-38

PAGE .. 1-38

EJECT .. 1-38

NAM .. 1-38

TTL ... 1-38

TITLE .. 1 - 38

HEADING ... 1 - 38

STTL ... 1-39

SUBTITLE .. 1 - 39

SUBHL .. 1 - 39

Linker Control .. 1 - 40

FILLCHAR .. 1 - 40

RECSIZE .. 1 - 40

SYMBOLS .. 1 - 40

IV

2500 A.D. Z80 Macro Assembler - Version 4.02 Table of Contents

OPTIONS .. 1 - 40

LINKLIST .. 1 - 40

COMREC .. 1-41

Assembly Time Calculations ... 1 - 42
Assembly Time Comparisons

 .. - 43
Absolute Versus Relative

 .. - 44

Macros .. 1 - 46

Definition ... 1 - 46

Argument Separators ... 1 - 46

Labels In Macros .. 1 - 47
String Concatenation

 .. - 47

Value Concatenation ... 1 - 47
Mnemonic Definitions

 .. - 48

Macro Examples ... 1 - 49

Recursion .. 1 - 52

Assembler Error Messages ... 1 - 53

2500 A.D. Linker Description ... 2 - 1

Linker Operating Instructions ... 2 - 3

Prompt Mode ... 2 - 3

Data File Mode ... 2 - 5

Command Line Mode .. 2 - 7

Linker Options ... 2 - 9

Address Relocation ... 2 - 10

Linker Examples .. 2 - 12

Single File Assembled At Desired Run Address 2- 12

Single File With Multiple Sections .. 2 - 14
Multiple Files With Multiple Sections

 .. - 16

Single File With One Section Used For Reference Only 2 - 18

Indirect Linking .. 2 - 20

Linker Symbol Table Output Formats .. 2 - 24

Symbol Table Output Format ... 2 - 24

Abbreviated Global Symbol Table Output Format 2 - 25

Microtek Symbol Table Output Format .. 2 - 26

Zax Symbol Table Output Format .. 2 - 27

Linker Output Formats ... 2 - 28

Intel Hex Format .. 2 - 28

Motorola S19 Format ... 2 - 30

Motorola 328 Format ... 2 - 32

Motorola S37 Format ... 2 - 34

V

2500 A.D. Z80 Macro Assembler - Version 4.02 Table of Contents

2500 A.D. Librarian Description 3 - 1

Librarian Installation 3 - 3

Librarian Operating Instructions ... 3 - 5

Librarian Error Messages ... 3 - 16

2500AD Software System Requirements ... A - 1

8080 To Z80 Source Code Converter ... B -1

ASCII CHART ... C - 1
Abbreviations for Control Characters .. C - 4
Index - D - 1

VI
Introduction

Introduction

This section is an overview of the 2500 A.D. Z30 Cross Assembler. The intent of this

manual is to describe the operation of the Assembler. It is assumed that the user is

familiar with the Z80 operation and instruction set.

The 2500 A.D. Z80 Assembler enables the user to write programs which can then be

assembled into relocatable object code and linked to the desired execution address

using the 2500 A.D. Linker.

The Assembler will process any size file, as long as enough memory is available. All

the buffers used by the Assembler are requested and expanded as needed, with the

exception of the Source Code Input Buffer, the Object Code Output Buffer and the

Listing Buffer.

The Conditional Assembly section enables the user to direct the Assembler to process

different sections of the source file depending on the outcome of assembly time

operations. Conditionals may be nested to 248 levels, and the Assembler aids the

programmer in detecting conditional nesting errors by not only checking for

unbalanced conditional levels, but also by displaying the current active conditional

level in the object code field of the listing.

The Assembly Time Calculation section will perform calculations with up to 16 pending

operands, using 80 bit arithmetic. The algebraic hierarchy may be changed through

the use of parenthesis.

The Listing Control section provides for listing all or just sections of the program, with

convenient Assembler error detection overrides, along with Assembly Run Time

Commands that may be used to dynamically change the listing mode. Also, in this

section is a description of the LINKLIST directive, which allows the linker to relocate

listings.

The 2500 A.D. Linker allows files to either be linked together or just used for external

reference resolution. As with the Assembler, all buffers used by the Linker are

requested as needed. The Linker is capable of outputting several different formats.

The format may be changed by using an Assembler Directive or selecting the desired

output from the Linker option field. Programs may specify up to 256 user defined

section names, and the Linker is capable of processing up to 256 identical section

names. See the Linker Description section of this manual for a complete description.

1 - 1

Operating Instructions Prompt Mode

Operating Instructions

Prompt Mode

To run the Assembler type : x80

The Assembler responds with :

Listing Destination ? (N, T, P, D, E, L, <CR =N>):

with the abbreviations as follows:

N =None
T = Terminal
P = Printer (Single User Systems Only)
D =Disk
E = Error Only
L = List On/Off

After this the Assembler prompts the operator for the source code filename _ as shown

below.

Input Filename:

When entering your source filename you may specify an extension or the assembler

will look for an extension of asm. Once you have specified your input filename the

assembler will prompt you for the output filename.

Output Filename:

If the user responds to the output filename prompt with just a carriage return, the

output file will receive the same filename as the input file, with an extension of obj. If

the response is a filename with no extension, the output file will be under that

filename with an extension of obj.

1 - 2
Operating Instructions Prompt Mode

It the listing is to be under List On/Off Assembler directive control the additional prompt

shown below is output:

LIST ON/OFF Listing Destination (T, P, D, <CR> = T) :

The abbreviations are the same as shown above.

The List On/Off control allows the user to list only selected parts of the source file. For

more information see the Listing Control section of this manual.

If Error Only is chosen the Assembler will prompt the user for the destination as follows:

Error Only Listing Destination (T, P, D, <CR, = T) :

If the listing is being sent to the printer (available on single user systems only) or the

disk, the Assembler will prompt for a Cross Reference Listing.

Note for VMS users:.

Assuming the assembler is located in a directory named $diskt[x80], the following

command must be entered for the examples shown above to work:

x80 == "$diski :[x80]x80.exe"

1 - 3
Operating Instructions Command Line Mode

Command Line Mode

The Assembler may also be invoked using a command line. In this case, the input

filename is specified first, then the output filename, and then a list of options. Both the

ouput filename and the listing destination are optional. The general form of the

command, with optional fields shown in brackets, is as follows:

x80 [-q] input_filename [output_filename] [-t, -p, -d, -px, -dx]

The -q option stands for Quiet mode. If this option is selected, the only screen

messages output from the Assembler will be error messages and the line on which they

occur. This option must be placed before the input filename. Not all options can be used

at the same time.

Below are some examples of legal command lines.

Input Filename Only

x80 inout_filename

This command causes the Assembler to process the source file input_filename. If no

extension is specified, it is assumed to be .asm. Since no options are specified, they will

default to Error Only listing with the terminal as the destination. The output filename will

be the same as the input filename but with an extension of .obj.

Input Filename and Output Filename

x80 input_filename output _filename

This command is identical to the previous one except that the Assembler will name the

object file output_filename'.

1 - 4

Operating Instructions Command Line Mode

Listing to Terminal

x80 input_filename output_filename -t

This command will assemble the input file input_filename and send the listing to the

terminal. The optional output filename specification causes the assembler to generate

an object file named output_filename.

Listing to Printer

x80 input_filename -p

This command will assemble the input file input_filename and send the listing to the

printer. The output filename will be input_filename with and extension of obi

Listing to Printer with Cross Reference

x80 input_filename output_filename -px

This command will assemble the input file input_filename and send the listing and cross

reference table to the printer. The optional output filename specification causes the

assembler to generate an object file named output_filename. The printer option is only

available on single user systems.

Listing to Disk

x80 input_filename output_filename -d

This command will assemble the input file input_filename and send the listing to the

disk. The disk listing file will have the same name as the output file, but will have an

extension of 1st. The optional output filename specification causes the assembler to

generate an object file named output_filename.

1 -5

Operating Instructions Command Line Mode

Listing to Another Drive or Directory

MSDOS

x80 input_filename output_filename -d,a:
x80 input_filename output_filename -d, \new\

UNIX

x80 input_filename output_filename -d, /new/

VMS

x80 input_filename output_filename -d,$diskl :[a]
x80 input_filename output_filename -d, [new]

This enables the user to send the listing to a different drive or directory other than the

current one.

Error Only Listing to the Terminal

x80 input_filename output_filename -et

This command will assemble the input file input_filename and send error messages to

the terminal. The optional output filename specification causes the assembler to

generate an object file named output_filename.

Listing to Disk with Cross Reference

x80 input_filename output_filename -dx

This command will assemble the input file input_filename and send the listing and cross

reference table to the disk. The disk listing file will have the same name as the output

file, but will have an extension of 1st. The optional output filename specification causes

the assembler to generate an object file named output_filename.

1 - 6

Operating Instructions Command Line Mode

Error Only Listing to the Printer

x80 input_filename output_filename -ep

This command will assemble the input file input_filename and send error messages to

the printer. The optional output filename specification causes the assembler to generate

an object file named output_filename. The printer option is available only on single user

systems.

Error Only Listing to the Disk

x80 input_filename output_filename -ed

This command will assemble the input file input_filename and send error messages to

the disk. The disk listing file will have the same name as the output file, but will have an

extension of 1st. The optional output filename specification causes the assembler to

generate an object file named output_filename.

List On/Off to Terminal

x80 input_filename -It

This command will assemble the input file input_filename and send LIST ON/OFF

blocks to the terminal.

List On/Off to Printer

x80 input_filename -Ip

This command will assemble the input file input_filename and send the LIST ON/OFF

blocks to the printer. This option is only available on single user systems.

1 - 7
Operating Instructions Command Line Mode

List On/Off to Disk

x80 inputillename -Id

This command will assemble the input file input_filename and send the LIST ON/OFF

blocks to the disk. The disk listing file will have the same name as the output file, but

with an extension of 1st.

Note for VMS users:

Assuming the ---,t3sembler is located in a directory named $diskt[x801, the following

command must be entered for the examples shown above to work:

x80 == "Sdiski :[x80]x80.exe"

1 - 8
Assembler Run Time Commands System Defaults

System Defaults

The following default filename extensions will be used by the 2500 A.D. programs if no

extension is specified by the user.

Assembler

asm - Input to the Assembler
obj - Output from the Assembler
pak Packed output from the Assembler
1st Listing file

Linker

obj Input to the Linker
lib Library file
tsk Executable Object Code
hex Intel Hex and Extended Intel Hex
tek Tektronix Hex
s19 Motorola S19
s28 Motorola 528
s37 Motorola 537

Librarian

obj Input to the Librarian
pak Packed input to the Librarian
lib Output from the Librarian

Note that because of the additional information included in the Assembler output file, the

Linker must always be run, even if the program is assembled at the desired run address

and there are no external references. This is so that all the additional information can be

removed and a file with the desired output format can be generated.

1 - 9
Assembler Run Time Commands Assembler Error Processing

Assembler Error Processing

When an assembly error is encountered, the action taken by the Assembler depends on

the listing mode it is currently operating under.

If the No List option was specified, the statement causing the error and the error

message will be output to the terminal, the display will be turned on and the Assembler

will halt just as if the user had typed As. The reason for this is to give the user a chance

to see exactly where the error is. This will occur on pass 1 as well as pass 2. Note that

some errors are not detectable on pass 1, such as undefined symbols. After the error

has been displayed, the output can be turned off using AN.

If the listing is being sent to the printer or the disk, then errors encountered on pass 1

are sent to the terminal but not the printer or disk, and the Assembler does not halt. On

pass 2, the error is output to the printer or disk as well as the terminal and the assembly

continues.

If the listing is being sent to the printer or disk under assembler djrective control, any

errors encountered during pass 1 are output to the terminal but not the printer or disk,

and the assembly continues. Errors detected during pass 2 are output to the printer or

disk and the terminal, even if the error is not inside a block that was specified to be

listed.

1 -10
Assembler Run Time Commands Assembler Run Time Commands

Assembler Run Time Commands

The following commands are active during the assembly process. These

commands are active during pass 1 as well as pass 2, and override the listing

mode specified when the Assembler was first activated.

Unix Assembler Run Time Commands

Msdos Assembler Run Time Commands

VMS Assembler Run Time Commands

Ctrl S - Ctrl 0 - Del C - Del T - Del D - Del M - Del N -

Stop terminal output
Start terminal output
Terminate the assembly
Display the output at the terminal
Send the output to the disk
Multiple output (Terminal & Disk)
No output

Ctrl S Ctri CI Esc C Esc T Esc P Esc D Esc M Esc N

Stop terminal output
Start terminal output
Terminate the assembly
Display the output at the terminal Display the output at the printer Send the output to the
disk Multiple output (Terminal & Disk) No output

Ctr
Ctr
Ctr C, C Ctr C, T Ctr C, D Ctr C, M Ctr C, N

Stop terminal output
Start terminal output
Terminate the assembly
Display the output at the terminal
Send the output to the disk
Multir'e output (Terminal & Disk)
No output

Assembly Language Syntax Number Base Designations

Assembly Language Syntax

This section describes the syntax used by the 2500 A.D. Cross Assembler.

Number Base Designations

Number bases are specified by the following:

Binary _ B
Octal 0 or 0
Decimal - D or no base designation
Hex - H or a preceding % sign
Ascii - Single or double quotes - "X" or 'X'

The two character sequences between single or double quotes shown below are

predefined. However, the TVVOCHAR ON directive must be used to enable these.

"CR" or 'CR' - Carriage return
"LF" or 'LF' - Line feed
"SP" or 'SP' - Space
"Hr. or 'HT' - Horizontal tab
"NL" or 'NL' - Null

Program Comments

Comment lines must start with a semi-colon or asterisk in column 1, unless the

COMMENT directive is used. Comments after an instruction do not need a semi-colon if

at least 1 space or tab precedes the start of the comment if the assembler is running in

Spaces Off mode. If the assembler is running in Spaces On mode, all comments after

an instruction must be preceded by a semi-colon. See the SPACES directive for more

information and for the default mode.

1 -12

Assembly Language Syntax Program Counter

Program Counter

The special character dollar sign ($) may be used in an expression to specify the

program counter. The value assigned to the dollar sign is the program counter value at

the start of the instruction.

Labels

Non-Local labels may be any number of characters long, but only 32 characters are

significant. Labels may start in any column if the name is terminated by a colon. If no

colon is used, the label must start in column 1. All labels must start with an alpha

character. Upper and lower case characters are considered to be different.

Local Labels

A Local Label is a label which can be used like any "non local" label. The difference is

that the definition of a Local Label is only valid between "non local" labels. The adjective

"local" refers to the area between labels which retain their definition through the entire

program. When a program passes from one local area to the next, local label names

can be reused. This feature is useful for labels referenced only within a "local area", as

defined above, and original label names are not necessary.

The assembler identifies a local label by the ($) prefix or suffix. This identifier can be

changed with the LLCHAR directive. Please see the section entitled 'Directive Definition

Control' for more information on this directive. Following are some examples of the use

of Local Labels.

1 -13
Assembly Language Syntox High Byte

In this example, there are three "non-local" labels, LABEL1, LABEL2, and LABEL3.

Local Labels, $1 and $2, or 1$ and 2$, have different definitions when referenced in

different local ar973. Note that $1 is not considered to be the same as 1$. Any character

may be used in a Local Label. Local Labels may be up to 32 characters long. Operators

such as '+' should never be used in Local Labels. Local labels will not be terminated if

the directives VAR, DEFL, SECTION, ENDS and $

are used. •

High Byte

To load the high byte of a 16 bit value the unary greater than sign,>, should be used.

This allows bits 8 through 15 to be used as a byte value which is relocatable.

Low Byte

To load the low byte of a 16 bit value the unary less than sign,<, should be used. This

allows bits 0 through 7 to be used as a byte value which is relocatable.

Upper / Lower Case

Upper and lower case labels are recognized as different labels. The labels used for

section names and macro names are also different if the label is in lower case rather

than upper case.

LABEL?:
$1: NOP
$2: JMP $1 JMP $2

LABEL1:
1$: NOP
2$: JMP 1$

JMP 2$

LABEL2: LABEL2:
$1: NOP 1$ NOP
$2: JMP $1 2$ JMP 1$

JMP $2 JMP 2$

LABELS: LABELS:
$1: NOP 1$ NOP
$2: JMP $1 2$ JMP 1$

JMP $2 JMP 2$

1 -14

Addressing Modes Immediate

Addressing Modes

Immediate

The data is contained in the instruction.

Examples:

LD HL,1234H ; Ld HL with the HEX number 1234.
LD HL,DATA ; Ld HL with the value associated with the

Label 'DATA'.

Register

The data is contained in a CPU register.

Examples:

LD A,B ; Ld the contents in register B into register A
SUB D ; Subtract the contents of register D from

register A.

Register Indirect

The operand address is pointed to by a register.

Examples:

LD A,(HL) ; Ld A with the contents of the location
pointed to by HL.

LD (HL),B ; Store the contents of B in the memory
address pointed to by HL

1 -15

Addressing Modes Direct Addressing

Direct Addressing

The address of the operand is contained in the instruction.

Examples:

LD HL,(1234H) ; Ld HL with the contents of memory location
1234 HEX

LD (ADDRESS),HL ; Store HL in the memory location 'ADDRESS'
LD (ABCDH),HL ; Store HL in the memory location ABCD

hexadecirn9:

Indexed

The operand address is the sum of the 8 bit offset in the instruction and the contents

of either IX or IY.

Examples:

LD A,(IX+4) ; Ld A with contents of the memory location
pointed to by adding 4 to the contents of register
IX

LD (IX+DATA8),B ; Store B in the memory location obtained
by adding the value associated with 'DATA8'
to the contents of register IX

Relative

The operand address is relative to the current instruction. If the address is given

using a numerical value, the calculation is from the start of the next instruction.

Examples:

DJNZ LOOP ; The Assembler calculates the address
by subtracting the address of the label 'LOOP'
from the address of the next instruction

JR 4 ; The destination is 4 BYTES past the start
of the next instruction

1-16
Assembler Directives Storage Control

Assembler Directives

This section describes the Assembler Directives. Directives may be preceded by a

decimal point if desired to help differentiate them from program instructions.

Storage Control

ORG

ORIGIN

Sets the program assembly address. If this directive is not executed, the assembly

address defaults to 0000.

END VALUE

This directive defines the end of a program or an included file. The expression following

an END statement is optional and if it exists, specifies the program starting address.

This address is encoded in the output file if a program starting address record type

exists in the output format definition.

LABEL: ASCII STRING

Stores STRING in memory up to but not including either a carriage return or a broken

bar character ("I", Hex 70). A label is optional. Following are some examples of ASCII.

ASCII Hello

ASCII Hello

ASCII Hello

; Stores the Ascii representation of
Hello in consecutive memory locations.
Incidentally, this comment would be
stored also.
; Now the comment wouldn't be stored.
The next example shows termination with
just a carriage return.

1 -17
Assembler Directives Storage Control

LABEL: DB VALUE

FCB

DEFB

BYTE

STRING

The Assembler will store the value of the expression in consecutive memory locations.

The BYTE expression may be any mixture of operand types with each one separated

by a comma. Ascii character strings must be bracketed by apostrophes. If the string

contains an apostrophe, this can be specified with two apostrophes in a row. If no

expression is given, one byte is reserved and zeroed. A label is optional. Following are

some examples of the use of the BYTE directive.

.BYTE ; Reserves 1 zeroed byte.

.BYTE 10 ; Reserves 1 byte = 10 decimal.

.BYTE 1,2,3 ; Reserves 3 bytes,= to 1,2 & 3 in that order.

.BYTE SYMBOL-10 ; Searches the symbol table
for SYMBOL, subtracts 10 decimal from it's
value, and stores the result.

.BYTE 'Hello' ; Stores the Ascii equivalent of
the string Hello in consecutive memory
locations.

.BYTE 'Hello', ODH ; Same as above example, with
the addition of a carriage return at the end. Spaces
are ignored before operands, but the comma is
required.

.BYTE '2500 A.D."s' ; Embedded apostrophe.

LABEL: DW VALUE

FDB

DEFW

LWORD

This directive will store the va:ue of the expression in a 16 bit storage location. Mutple

words may be initialized by separating each expression with a comma. If no expression

is given, 1 word is reserved and zeroed. A label is optional.

1 -18

Assembler Directives Storage Control

LABEL: LONG VALUE

LONGW

LWORD

This directive will store the value of the expression in a 32 bit storage location. Multiple

long words may be initialized by separating each expression with a comma. If no

expression is given, 1 long word is reserved and zeroed. A label is optional.

LABEL: FCC STRING

Stores STRING in memory until a character is reached that matches the first character.

The first character and the second matching character are not stored. A label is

optional. Typical usage is as follows:

FCC /This is a test string/

DC "String"

This directive sets the high bit on the last character of a string.

DS SIZE,VALUE

RMB

DEFS

This directive will reserve the number of bytes specified by SIZE. No value is stored in

the reserved area. This directive differs from the BLKB directive in that if the storage

locations are at the end of a program section, the output from the Linker is executable,

and the Linker is not required to stack another module on top of this section, the

reserved bytes are not included in the output file.

1 -19

Assembler Directives Storage Control

LABEL: FLOAT VALUE

Converts the value specified into single precision floating point format. The value is

not rounded but is truncated if the mantissa is larger than 24 bits. The directive does

not allow scientific notation.

FLOAT 178.125
FLOAT 100,.125,-178.125

LABEL: DOUBLE VALUE

Converts the value specified into double precision floating point format. The value is

not rounded but is truncated if the mantissa is larger than 52 bits. The directive does

not allow scientific notation.

DOUBLE 178.125
DOUBLE 100,.125,-178.125

LABEL: BLKB SIZE, VALUE

Reserves the number of bytes specified by SIZE. If the value field is present, that

value is stored in each byte. Otherwise, the reserved bytes are zeroed. A label is

optional.

1 - 20

Assembler Directives Storage Control

BLKB 20 ;Reserves 20 zeroed bytes
BLKB 20,0 ;Reserves 20 zeroed bytes

BLKB 20,FFH ;Reserves 20 bytes and stores FF Hex in each one

LABEL: BLKW SIZE, VALUE

Reserves the number of 16 bit words specified by SIZE. If the value field is present, that

value is stored in each word. Otherwise, the reserved words are zeroed. A label is

optional.

BLKW 20 ;Reserves 20 zeroed words
BLKW 20,0 ;Reserves 20 zeroed words
BLKW 20,FFFFH ;Reserves 20 words and stores FFFF Hex in each one

LABEL: BLKL SIZE, VALUE

Reserves the number of 32 bit long words specified by SIZE. If the value field is

present, that value is stored in each long word. Otherwise, the reserved long words are

zeroed. A label is optional.

BLKL 20 ;Reserves 20 zeroed long words
BLKL 20,0 ;Reserves 20 zeroed !ong words
BLKL 20,FFFFH ;Reserves 20 long words and stores FFFF Hex in each

one

1 - 21
Assembler Directives Definition Control

Definition Control

LABEL: EQU VALUE

EQUAL

Equates LABEL to VALUE. VALUE may be another symbol or any legal arithmetic

expression.

LABEL: VAR VALUE

DEFL

Equates LABEL to VALUE, but may be changed as often as desired throughout the

program. A label defined as a variable should not be redefined by an EQUAL directive.

LLCHAR CHARACTER

The default character for designating a Local Label is the ($). This directive changes the

character which identifies a particular symbol as a Local Label. Symbols that designate

number bases should be avoided, unless they are used on the trailing end of the label.

LABEL: MACRO ARGS

Specifies the start of a Macro Definition.

ENDM

MACEND

Specifies the end of a Macro Definition.

1 - 22
Assembler Directives Definition Control

MACEXIT

This directive causes the immediate exit from a macro. The difference between

MACEXIT and MACEND is that during the macro definition process, MACEXIT does not

terminate the macro, and if MACEXIT is in the path of a false conditional assembly

block, it is not executed. All conditional assembly values are restored to the same state

as when the macro was invoked.

MACDELIM CHARACTER

This directive is used to pass an argument containing a comma into a macro. The

default mode is for commas to always be argument separators. The allowed characters

are '{', '(' and '[. All characters between matching delimiter pairs will be passed through

as one argument. Please refer to the Macro Examples section of this manual for some

examples of the use of this directive.

XDEF LABEL

GLOBAL

PUBLIC

Specifies the label as a global label that may be referenced by other programs. Multiple

labels may be specified as long as each one is separated by a comma. Below are some

examples of the correct use of GLOBAL.

GLOBAL SYM1 ; Declares the label SYM1 to be accessible to other pro-
grams. The Linker will resolve external references.

GLOBAL SYM1,SYM2 ; Multiple declarations on
the same line are legal separated by a comma. The
spaces are ignored.

1 - 23
Assembler Directives Definition Control

GLOBALS ON

This directive causes the Assembler to treat all labels after GLOBALS ON as global

labels which may be referenced by other programs. This directive will not affect

Local Labels. Below is an example of the use of GLOBALS.

GLOBALS ON
SYM1 NOP ;Declares the labels SYM1 and SYM2,

SYM2 NOP ;accessible to other programs. This
directive is not ;reset by the module and endmod
directives. The ;default is GLOBAL OFF.

GLOBALS OFF

This directive returns the Assembler to the default mode which requires Global

symbols to be specified with GLOBAL directives.

XREF LABEL

EXTERN

EXTERNAL

Specifies the label as being defined in another program. Multiple labels may be

specified as long as each one is separated by a comma.

LABEL: ASK PROMPT

Outputs 'PROMPT to the terminal and waits for a 1 character response, from which

30 hex is subtracted. The purpose of this is usually to introduce a 0/1 flag into the

program. 'LABEL' is set equal to the result. A carriage return terminates 'PROMPT'.

On pass 2, the line is output along with the response.

The following is an example of 'ASK':

DISK SIZE: ASK ASSEMBLE FOR 8" (=1) OR 51/4" (=0) DRIVES ? :

1 - 24
Assembler Directives Assembly Mode

Assembly Mode

LABEL: SECTION

This directive allows user defined section names to be generated. The Assembler has 2

predefined sections, CODE and DATA. The total number of section names allowed per

file is 256. Each name may be up to 32 characters long. Lower and upper case are

considered to be different. After the section has been defined, the program may switch

back and forth simply by using the name as a mnemonic. The default section is CODE.

Sections may be nested. As with all directives, a section name may be preceded by a

decimal point. See the Linker Operating Instructions section of this manual for

information on how the Linker handles section names. Below are some examples of

defining section names and switching between different sections.

NOP ;This instruction goes into the CODE
section ;by default

.DATA ;Switch to the predefined DATA section

.BYTE ;This byte goes into the DATA section

SECTION1: .SECTION ;Define a new section. The definition makes
;this section active automatically

NOP ;This instruction goes into the
SECTION1 ;section

.CODE ;Switch back to the section named CODE

NOP ;This instruction goes into the CODE section

.SECTION1 ;Switch to the user defined section SECTION1

NOP ;This instruction goes into the
SECTION1 ;section

.BYTE ;Any section may contain code or data or both.

ENDS

This directive is used in conjunction with the SECTION directive. ENDS enables the

termination of nested sections in a file.

1 - 25
Assembler Directives Assembly Mode

ABSOLUTE

This directive enables the assembler to use page 0 addresses when

possible. This directive is supported for compatibility with our series 3.0

assemblers. For a more detailed discussion, refer to the "Absolute versus

Relative" section of this manual. Executable instructions should always be

assembled in Relative mode.

RELATIVE

This directive enables the assembler to return from Absolute mode to Relative

mode. Executable instructions should always be assembled in Relative mode. This

is the default mode.

RADIX VALUE

2 or B =Binary

8 or 0 or 0 =Octal
10 or D = Decimal
16 or H = Hexadecimal

No expression = return to default mode which is base 10, and assume all others will

be designated with B, Q, D or H after the constant. Note that when base 16 is

specified there is no way to define a decimal or binary number, since both D and B

are legal hexadecimal numbers.

INCLUDE filename

Directs the Assembler to include the named file in the assembly. Filenames may

include pathnames. Filename extensions must be completely specified. Includes

may not be nested.

1 - 26
Assembler Directives Assembly Mode

SPACES ON

This directive enables spaces in between operands. When spaces are enabled,

comments must begin with a semi-colon. The default mode is spaces off.

SPACES OFF

This directive disables spaces in between operands. When spaces are disabled,

comments do not need to start with a semi-colon. This is the default mode.

TWOCHAR ON

This directive enables the ascii two character abbreviations shown below. The default

mode is TWOCHAR OFF.

"CR" or 'CR' - Carriage return
"LF" or 'LP - Line feed
"SP" or 'SP' - Space
"HT" or 'HT' - Horizontal tab
"NL" or 'NL' - Null

TWOCHAR OFF

This directive disables the ascii two character abbreviations shown in the previous

directive. This is the default mode.

MODULE

This directive is meant to be used in conjunction with the ENDMOD directive and the

Library Manager. Normally, libraries are composed of many small routines. When the

Linker cannot find a Global Symbol in any of the files that are involved in the link, it can

search the libraries for the symbols it cannot find. This means that each routine must be

in a separate file and each file must be assembled separately.

1 - 27

Assembler Directives Assembly Mode

Instead of having separate files, each routine can be bracketed with the MODULE

and ENDMOD directive, which allows all the routines to be in one file. This

essentially causes the Assembler to treat each module as a totally separate

assembly, so references to External symbols must be declared External, and

symbols used by other modules must be declared Global. All modules must be

terminated with an ENDMOD. Modules may not be nested. Modules may have

include files within them, but they may not be inside an include file. There is no limit

on the number of modules that may be in a file. The Assembler will produce an

output file with an extension of pak. This file can only be processed by the Librarian,

but is simple to manipulate with the Librarian commands ADD ALL and REPLACE

ALL. Please see the section entitled Librarian Commands for information on these

commands. Following is an example of the use of MODULE and ENDMOD.

If the above file was named test.asm, it would be assembled as usual but the output

filename would be test.pak. Note during the assembly how the Assembler restarts

at the beginning of each module.

.MODULE JUMP_TABLE

.GLOBAL JUMP_TABLE

.EXTERN ROUTINE1

.EXTERN ROUTINE2
;Define library name
;Make table available to other
;modules in file
;Define externals

.WORD ROUTINE1

.WORD ROUTINE2

.ENDMOD

.MODULE ROUTINE1

.GLOBAL ROUTINE1

NOP
.ENDMOD
.MODULE ROUTINE2
.GLOBAL ROUTINE2

NOP
.ENDMOD
.END

;Store Routine Addresses

;Define end of module ;Define library name ;Make routine available

;Define end of module ;Define library name ;Make routine available

;Define end of module ;Define end of file
JUMP_TABLE:

ROUTINE1:

ROUTINE2:

1 - 28
Assembler Directives Assembly Mode

SPACES ON

This directive enables spaces in between operands. When spaces are enabled,

comments must begin with a semi-colon. The default mode is spaces off.

SPACES OFF

This directive disables spaces in between operands. When spaces are disabled,

comments do not need to start with a semi-colon. This is the default mode.

TWOCHAR ON

This directive enables the ascii two character abbreviations shown below. The

default mode is TWOCHAR OFF.

"CR" or 'SR' - Carriage return
"LF" or 'LF' - Line feed
"SP" or 'SP' - Space
"HT" or 'HT' - Horizontal tab
"NL" or 'NL' - Null

TWOCHAR OFF

This directive disables the ascii two character abbreviations shown in the previous

directive. This is the default mode.

MODULE

This directive is meant to be used in conjunction with the ENDMOD directive and the

Library Manager. Normally, libraries are composed of many small routines. When

the Linker cannot find a Global Symbol in any of the files that are involved in the link,

it can search the libraries for the symbols it cannot find. This means that each

routine must be in a separate file and each file must be assembled separately.

1 - 27
Assembler Directives Assembly Mode

Instead of having separate files, each routine can be bracketed with the MODULE

and ENDMOD directive, which allows all the routines to be in one file. This

essentially causes the Assembler to treat each module as a totally separate

assembly, so references to External symbols must be declared External, and

symbols used by other modules must be declared Global. All modules must be

terminated with an ENDMOD. Modules may not be nested. Modules may have

include files within them, but they may not be inside an include file. There is no limit

on the number of modules that may be in a file. The Assembler will produce an

output file with an extension of pak. This file can only be processed by the Librarian,

but is simple to manipulate with the Librarian commands ADD ALL and REPLACE

ALL. Please see the section entitled Librarian Commands for information on these

commands. Following is an example of the use of MODULE and END MOD.

If the above file was named test.asm, it would be assembled as usual but the output

filename would be test.pak. Note during the assembly how the Assembler restarts

at the beginning of each module.

.MODULE JUMP TABLE

.GLOBAL JUMP_TABLE

.EXTERN ROUTINE1

.EXTERN ROUTINE2
;Define library name
;Make table available to other
;modules in file
;Define externals

JUMP_TABLE: .WORD ROUTINE1
.WORD ROUTINE2
.ENDMOD
.MODULE ROUTINE1
.GLOBAL ROUTINE1

ROUTINE1: NOP
.ENDMOD
.MODULE ROUT1NE2
.GLOBAL ROUTINE2

ROUTINE2: NOP
.ENDMOD
.END

;Store Routine Addresses

;Define end of module ;Define library name ;Make routine available

;Define end of module ;Define library name ;Make routine available

;Define end of module ;Define end of file

1 - 28
Assembler Directives Assembly Mode

ENDMOD

This directive is used in conjunction with the MODULE directive and terminates each

module in a file. Please refer the MODULE directive for examples of the use of

ENDMOD.

COMMENT CHARACTER

This directive allows the user to write blocks of comments at time. A comment block is

executed as follows:

COMMENT X

Where X can be any character. The Assembler will treat everything from the first X to

the second X as a comment block. Since the terminating character is not scanned for

until the next line the comment field must be two lines long.

BIT7 ON

This directive will causes the Assembler to set the high bit of each character in an Ascii

String. This applies to the ASCII directive and the BYTE directive only, and it only

applies to the BYTE directive when the characters are enclosed in single or double

quotes. In otherwords, data values will not be affetected. The Assembler defaults to

BIT7 OFF.

BIT7 OFF

This directive returns the Assembler to it's default mode, which is to leave bit 7 cleared

on Ascii characters.

1 - 29
Assembler Directives Conditional Assembly

Conditional Assembly

IFZ VALUE

IFE

The Assembler will assemble the statements following the directive up to an ELSE or

ENDIF directive if the VALUE is equal to zero. Conditional statements may be nested

up to 248 levels. VALUE can be an arithmetic expression, another symbol or a string.

IF VALUE

IFN

IFNZ

COND

Assemble the statements following the directive up to an ELSE or ENDIF directive if the

value of VALUE is not equal to zero. Conditional statements may be nested up to 248

levels.

1FTRUE VALUE

IFN FALSE

This direct've is actually the same as IFNZ, but is more logical when using assembly

time comparisons. If the specified condition is true, then the following statements are

assembled up to an ELSE or ENDIF directive. If the condition is not true, the statements

up to an ELSE or ENDIF directive are not assembled.

IFNTRUE VALUE

IFFALSE

This directive is the same as IFZ, and is the complement to IFTRUE. If the specified

condition is false, then the following statements are assembled up to an ELSE or ENDIF

directive. If the condition is true, then the statements up to an ELSE or ENDIF directive

are not assembled.

1 - 30

Assembler Directives Conditional Assembly

IFDEF LABEL

This directive will activate a symbol table search, and if LABEL is found, then the

statements following this one up to an ELSE or ENDIF directive will be assembled. If

LABEL is not found, then the statements following this statement up to an ELSE or

ENDIF directive will not be assembled.

IFNDEF LABEL

This directive is the complement of IFDEF. The symbol table is searched and if LABEL

is not found, the statements following this one up to an ELSE or ENDIF directive are

assembled. If LABEL is found, then the statements following this one up to an ELSE or

ENDIF directive are not assembled.

IFSAME STRING1,STRING2

IFNDIFF

This directive compares STRING1 to STRING2, and conditionally assembles the

statements following this statement depending on the result of the comparison. If the

two strings are identical then the statements up to an ELSE or ENDIF directive are

assembled. If the strings are not identical, then the statements up to an ELSE or ENDIF

directive are not assembled. The strings may be one of two different types, namely with

spaces or without spaces. However, both strings being compared must be of the same

type. If the strings contain spaces, then the beginning and end of each string must be

denoted with an apostrophe, with embedded apostrophes denoted by the use of two

apostrophes. If the strings do not contain spaces, then the apostrophes are not

required. This mode is very useful when comparing macro parameter arguments. In

both cases, the strings must be separated with a comma. Following are some examples

of the use of IFSAME.

1 - 31
Assembler Directives Conditional Assembly

IFSAME 'test string','test string'
IFSAME '2500 A.D."s','2500 A.D."s'
IFSAME X,Y

In the first example above, the strings contain spaces and therefore must be bracketed

by apostrophes. The second example shows embedded apostrophes, which are

represented by using two apostrophes. In the third example, a macro might be testing

for a certain register, and since the strings do not contain spaces, they do not need to

be enclosed in apostrophes.

IFNSAME STRING1,STRING2 IFDIFF

This directive is the complement to IFSAME. If the two strings are not identical, the

statements after this statement are assembled up to an ELSE or ENDIF directive. If

the two strings are identical the statements up to an ELSE or ENDIF directive are not

assembled. The syntax rules governing the form of the strings are the same as for

IFSAME. See IFSAME for examples of the use of this directive.

IFEXT LABEL

This directive will cause the Assembler to search the symbol table for the label, and

assemble the statements fouowing this statement up to an ELSE or ENDIF if the label

has been declared external. An error message is generated if the label is not found.

IFNEXT LABEL

This directive will cause the Assembler to search the symbol table for the label, and

assemble the statements following this statement up to an ELSE or ENDIF if the label

has not been declared external. An error message is generated if the label is not

found.

1-32
Assembler Directives Conditional Assembly

IFABS LABEL

IFNREL

This directive will cause the Assembler to search the symbol table for the label, and

assemble the statements following this statement up to an ELSE or ENDIF if the label

is absolute (i.e. not relocatable). External labels are considered to be relocatable. An

error message is generated if the label is not found.

IFREL LABEL

IFNABS

This directive will cause the Assembler to search the symbol table for the label, and

assemble the statements following this statement up to an ELSE or ENDIF if the label

is relocatable. External labels are considered to be relocatable. An error message is

output if the label is not found.

IFMA EXP

This directive is intended to be used inside a macro, and will scan the macro call line

for the existence of the argument number specified by the value of EXP. If the

argument exists, the statements following this one up to an ELSE or ENDIF will be

assembled. If the argument does not exist, the statements fol lowing this one up to an

ELSE or ENDIF will not be assembled. No arguments can be detected by having EXP

= 0. In this case, if no arguments are present in the macro call line, the following

statements are assembled, and if arguments are present in the macro call line, the

following statements are not assembled. See the Macro section of this manual for

examples of the use of this directive.

IFNMA EXP

This directive is the complement to IFMA, and checks the macro call line to see if the

argument number given by the value of EXP exists. If the argument is not present, the

statements following this one up to an ELSE or ENDIF are assembled. If the argument

is present, the statements following this up to an ELSE or ENDIF are not assembled.

The existence of any arguments at all can be detected by

1 - 33

Assembler Directives Conditional Assembly

having EXP = 0. In this case, if there is at least one argument in the macro call line, the

following statements will be assembled. If there are no arguments in the macro call

line, the following statements will not be assembled. See the Macro section of this

manual for examples of the use of this directive.

ELSE

Start of statements to be assembled if any of the above IF type of directives are false.

ENDC

ENDIF

Specifies the end of a conditional assembly block. When the Assembler detects

unmatched IF - ENDIF pairs, an error message is output. Since recursive macros will

almost always be controlled by IF type directives, the IFCLEAR directive may be

needed. The difference between the two is that ENDIF is always executed, while

IFCLEAR is not executed when it is inside a false conditional assembly block.

IFCLEAR

This directive performs exactly the same function as ENDIF, except that it is not

executed when it is inside a false conditional assembly block. This directive can be usd

in a recursive macro to maintain balanced IF - ENDIF pairs, allowing the macro to

eventually terminate, yet still taking advantage of the IF - ENDIF checking performed

by the Assembler. This directive can be used to perform the same function when a

macro contains a MACEXIT directive for early macro exits, since these would almost

alwayt PLe controlled by an IF directive of some sort. See the Macro section of this

manual for examples of the use of this directive.

1 - 34
Assembler Directives Conditional Assembly

EXIT "MESSAGE"

This directive is meant to be used inside of a conditional and will terminate the

assembly if it is executed. MESSAGE is output by the assembler as an error message.

If the surrounding condition is true, then the EXIT directive is executed, the user

defined error message is output, and the assembly is terminated. If the surrounding

conditional is false, then the assembly coutinues without interruption. The maximum

length of the user defined error message is 79 characters. An example of EXIT is as

follows:

IFTRUE TABLE_SIZE .UGT. MAX_TABLE_SIZE
EXIT
END IF

NOTE: If the assembly is terminated, it will occur on the first•pass and no listing file will

be created.

1 -35
Assembler Directives Assembly Listing Control

Assembly Listing Control

LIST ON

LIST

Turns listing on if LIST ON/OFF was specified as the listing destination when the

Assembler was first entered. This directive must always be used before LIST OFF. In

other words, at the start of the program, LIST OFF is assumed.

LIST OFF

NOLIST

NLIST

Turns listing off if LIST ON/OFF was -specified and LIST ON was executed. This is the

default mode and therefore should only be used following a LIST ON directive.

MACLIST ON

IVILIST

Turns listing of MACRO expansions on. This is the default mode.

MACL1ST OFF

MNLIST

Turns listing of MACRO expansions off. The default is on.

CONDLIST ON

Turns on listing of false conditional assembly blocks. This is the default mode.

1 - 36
Assembler Directives Assembly Listing Control

CONDL1ST OFF

Turns off listing of false conditional assembly blocks. The default is on.

ASCLIST ON

Turns on the listing of ascii strings that require more than 1 line of object code on the

assembler listing.

ASCLIST OFF

Turns off the listing of ascii strings that require more than 1 line of object code on the

assembler listing. Only the first line of the object code will be listed.

PW EXP

Sets the printer page width. The default page width is 132 columns.

PL EXP

Sets the printer page length. The default page length is 61 lines. The Assembler issues

a form feed when this limit is reached or exceeded. If an error is encountered, the

Assembler will output the form feed after the error message.

TOP EXP

This directive controls the number of lines from the top of the page to the page number.

The default is zero.

1 -37

Assembler Directives Assembly Listing Control

PASS1 ON

Turns on the listing of pass 1. This can be used to help find errors due to the

Assembler taking a different path on Pass 1 as compared to Pass 2. This condition

will usually generate a 'Symbol value changed between passes' error. This directive

can also be useful for finding nested conditional assembly errors.

PASS1 OFF

Turns off listing of pass 1 assuming PASS1 ON was executed.

PAG

PAGE

EJECT

Outputs a form feed to the listing device.

NAM STRING

TTL

TITLE

HEADING

Causes STRING to be printed at the top of every page. If STRING is not specified

the TITLE directive will be turned off. The title may be changed as often as desired

and may be turned off at any time. The maximum title length is 80 characters. Also,

the first two tabs between the TITLE directive and the start of the string, if they

exist, will be ignored. All spaces and tabs after this will be included in the title.

1 - 38
Assembler Directives Assembly Listing Control

STTL STRING

SUBTITLE

SUBHL

Causes STRING to be printed at the top of every page. If TITLE was executed, the

subtitle will appear below it. If TITLE was not executed or was turned off, the subtitle will

still be output. If STRING is not specified, the directive will be turned off. The subtitle

may be changed as often as desired and may be turned off at any time. The maximum

subtitle length is 80 characters. As with the TITLE directive, the first two tabs between

the SUBTITLE directive and the start of STRING, if they exist, will be ignored and any

spaces and tabs that appear after that will be included in the subtitle.

1 - 39
Assembler Directives Linker Control

Linker Control

FILLCHAR VALUE

The linker will fill in gaps which are created by the use of sections or origins with the

value specified. This directive is only applicable to the executable output from the

Linker. All other output formats will begin a new recored if an origin gap is detected.

RECSIZE VALUE

The record length may be changed for Intel Hex and Motorola S record outputs with

this directive. By specifying a value standard 32 data bytes for Intel and 131 data bytes

for Motorola will be replaced with VALUE.

SYMBOLS

This enables the symbols to be sent to an output file for the linker. This directive must

be used to enable the Linker to output the Microtek symbol table format.

OPTIONS OPTION LIST

This directive is used to select the options for the Linker. For a list of the options see

the Linker Options section of this manual. The default output filetype is Intel Hex. The

output from the Linker may still be changed by using the Linker options field.

LINKLIST

This directive will cause the linker to relocate the assembler listings so that the

execution address, the addresses in the object code field and the values in the cross

reference table are the actual vlaues at run-time. This directive works with the listing to

disk option only.

1 - 40

Assembler Directives Linker Control

COMREC "String"

This directive allows the user to insert a comment record in the Motorola outputs. The

format of COMREC is as follows.

COMREC "STRING"

1 - 41
Assembler Directives Assembly Time Calculations

Assembly Time Calculations

The following list gives the allowed assembly time calculations. Also shown is their

priority level. Priority level 7 operations are the first to be performed. Parenthesis

may be used to force the calculations to proceed in a different order. Calculations

are performed using 80 bit integer arithmetic with the exception of exponentiation

which only uses an 8 bit exponent. The maximum number of pending operations is

16.

OPERATION PRIORITY DESCRIPTION

Unary + 7 Optionally specifies a positive operand.
Unary - 7 Negates the following expression.
\ or .NOT. 7 Complements the following expression.
Unary > 7 Keeps the high order byte of the follow-

ing address. This must be used to obtain
relocatable byte address values.

Unary< 7 Keeps the low order byte of the following
address. This must be used to obtain re-
locatable byte address values.

** 6 Unsigned exponentiation
* 5 Unsigned multiplication
/ 5 Unsigned division
.MOD. 5 Remainder

.SHR. 5 Shift the preceding expression
right (with 0 fill) the number of times specified
in the following expression.

.SHL. 5 Shift the preceding expression left
(with 0 fill) the number of times specified
in the following expression.

+ 4 Addition
- 4 Subtraction
& or .AND. 3 Logical AND
A or .OR. 2 Logical OR
.X0R. 2 Logical exclusive OR

1-42
Assembler Directives Assembly Time Comparisons

Assembly Time Comparisons

The following list gives the assembly time comparisons which will return all if

the comparison is true and all O's if the comparison is false:

= or .EQ. - Equal
> or .GT. - Greater than
< or .LT. - Less than

 .UGT. - Unsigned greater than
 .ULT. - Unsigned less than

1 -43
Assembler Directives Absolute Versus Relative

Absolute Versus Relative

The absolute directive enables the assembler to use page 0 addresses when possible

and should be used when a symbol is required to have an absolute value. This

directive is supported for compatibility with our series 3.0 assemblers. If the Absolute

directive is used, the Relative directive must be used to return the assembler to

relocatable mode. The assembler should always be returned to Relative mode before

any executable instructions are assembled. The Absolute & Relative attributes do not

change when the section is changed.

Another valid use of this directive is in laying out assembly language structures. This

can be done in a user defined section as in the following example:

STRUCTURE_SECTION: .SECTION
.ABSOLUTE
.ORIGIN <initial offset>

NAME: .DS <expression>
COMPANY: .DS <expression>
ADDRESS: .DS <expression>
CITY: .DS <expression>
STATE: .DS <expression>
ZIP_CODE: .DS <expression>
STRUCTURE_SIZE: .DS 0

where the Origin statement may be omitted if the "initial offset" for the structure is zero

and "expression" is equal to the size of the corresponding member of the structure.

Note that in this example, storage space for three different structures of this type could

be reserved by the following code:

STRA: .DS STRUCTURE_SIZE
STRB: .DS STRUCTURE_SIZE
STBC: .DS STRUCUTRE_SIZE

Forming structures in this way has the advantage of automatically computing offsets

and structure sizes while allowing the programmer to add or delete elements of the

structure without re-computing the offset for each individual member. If this section is

linked as a "reference only section" by preceding the "load offset" given at link time

with a hyphen, then the bytes reserved by the DS directives will not be included in the

output file. For more information regarding "reference only" refer to the linker section of

this manual.

1 -44
Assembler Directives Absolute Versus Relative

Note that the correct procedure for generating executable code at absolute addresses

is:

(1) Assemble in relative mode.

(2) Supply the linker with a "load offset" of zero for these instructions at link time.

If executable instructions are assembled in Absolute mode, relative references will be

calculated with absolute values. The result of this is that displacements will be an

absolute number, just as if the symbol was defined with the EQUAL directive. Consider

the following example:

.CODE

.ABSOLUTE
.ORG 20H
LABEL: NOP

JMP LABEL
.END

where LABEL has a value of 20H. This JMP instruction will use a +20H as its

displacement value. This is equivalent to the instruction:

JMP 20H

where the next instruction executed will always be +20H bytes away from this JMP

instruction.

1 - 45
Macros Definition

Macros

Definition

A macro is a sequence of source lines that will be substituted for a single source

line. A macro must be defined before it is used. The Assembler will store the macro

definition and, upon encountering the macro name, will substitute the previously

defined source lines. Arguments may be included in the macro definition. Arguments

may be substituted into any field except the comment field.

For macro definitions, dummy arguments may not contain spaces. However, for

actual macro calls, arguments may be any type; direct, indirect, character string or

register. Spaces are not allowed in arguments unless it is an Ascii string, in which

case the string must be bracketed in apostrophes. If the string contains an

apostrophe, this can be specified with two apostrophes in a row. Arguments will be

passed through to any nested macros if the dummy argument names are identical.

Macro nesting is limited only by the amount of memory space available.

To define a macro the .MACRO directive is used. A macro must have the .MACEND

or .ENDM directive following the macro definition. The name of the macro is in the

label field.

Argument Separators

In the macro call line arguments must be separated by commas, however leading

spaces and tabs are ignored. If no argument is present, a single comma will serve

as a place holder.

The * as an argument will not be used as the program counter but as the

multiplication sign. In a macro body, the following argument separators are allowed:

+ -* ** & A =OM
.NOT. .AND. .OR. .X0R. .EQ. .GT. .LT .GT.
.ULT..SHR..SHL.

1 - 46

Macros Labels In Macros

Labels In Macros

Labels are allowed in macro definitions. Labels may be defined in two ways: explicit

or implicit. Explicit labels in the macro definition will not be altered by the Assembler.

Implicit labels are followed by a #. The Assembler will substitute a 3 digit macro

expansion number for the #. In this case, the label and the macro expansion number

must not exceed 32 characters. An argument may be used to specify a label.

String Concatenation

The broken bar character (I = hex 7C) is used as the string concatenation operator.

Concatenation may only be performed inside of a macro.

Value Concatenation

Concatenation of a string and the value of an expression may be achieved by using

the broken bar character (I = hex 7c) followed by a left angled bracket, the

expression, and a right angled bracket. No spaces are allowed between the broken

bar and the left angled bracket. Following is an example of this operation:

CONCAT .MACRO ARG
VALUE: .VAR VALUE+1
ARGI<VALUE*2> .EQU 31

.ENDM
VALUE .VAR 0

CONCAT LABEL

The invocation, CONCAT LABEL, will produce:

LABEL2 .EQU 31

It is important to initialize VALUE before the macro is invoked. Otherwise, the label

being generated will have a different value on pass 1 and pass 2.

1 - 47
Macros Mnemonic Definitions

Mnemonic Definitions

The Assembler tables are searched in the following order:

1st - Mnemonic Table
2nd - Macro Definition Table
3rd - Assembler Directive Table
4th - Section Name Table

To redefine a mnemonic the MACFIRST directive may be used. This will switch the

order of the search to Macro Definition Table first and Mnemonic Table second.

Macros Macro Examples

Macro Examples

A macro could be written to do string comparisons. This macro demonstrates the

use of this feature.

CMP_STRING: .MACRO ARG1
!FNMA 1
CMP_STRING NEEDS AN ARGUMENT
MACEXIT
END IF
IFSAME "JANUARY",ARG1
MONTH BYTE 1
MACEXIT
END IF
IFSAME "FEBRUARY",ARG1
MONTH BYTE 2
MACEXIT
END IF
IFSAME "MARCH",ARG1
MONTH BYTE 3
MACEXIT
END IF
IFSAME "APRIL",ARG1
MONTH BYTE 4
MACEXIT
END IF

IFSAME "MAY",ARG1
MONTH BYTE 5
MACEXIT
END IF
IFSAME "JUNE",ARG1
MONTH BYTE 6
MACEXIT
END IF
ARGUMENT ERROR IN MACRO STRING
ENDM
CMP_STRING "APRIL"
END

1 - 49
Macros Macro Examples

The following example demonstrates the use of argument substitution in the operand

field of a macro.

EMPLOYEE _INFO: .MACRO ARGI ,ARG2,ARG3
NAME: .DB AFIG1
DEPARTMENT: ASCII ARG2
DATE_HIRED: .LONG ARG3

.ENDM
EMPLOYEE INFO 'JOHN DOE',PERSONNEL,101085
.END

This example could be changed to pass the argument into the label field. This enables

the structure to be altered.

EMPLOYEE_INFO: .MACRO APG1,ARG2,ARG3
ARG1: .DS 30H
ARG2: .DS 10H
ARG3: .LONG

.ENDM
EMPLOYEE INFO NAME,DEPARTMENT,DATE_HIRED
.END

The macro section also allows substitution into the mnemonic field. Also, a label can be

generated within the macro with the # sign.

INSTRUCTION: MACRO ARG,VAL
ARC

LAB#: DS VAL
.MACEND
INSTRUCTION NOP,7
.END

1 - 50
Macros Macro Examples

To redefine a mnemonic the MACFIRST ON directive must precede the macro.

MACF1RST ON
NO P: .MACRO ARG

DB ARG
.ENDM
NOP FFH
END

Another macro directive, MACDELIM, can be used to pass commas into a macro. The

following examples show the syntax for this directive.

MACDELIM
DELIM_EX: MACRO ARG1 ARG2

BYTE FFH,ARG1,ARG2 ENDM
DELIM_EX {,A4H},(,1 2111

MACDELIM
DELIM_EX: MACRO ARG1

BYTE FFH ARG1 ENDM
DELIM_EX [,A4H]

MACDELIM
DELIM_EX: MACRO ARG1

BYTE FFH ARG1 ENDM
DELIM_EX (,A4H)

1 - 51
Macros Recursion

Recursion

Below is an example of a recursive macro that reserves the number of data bytes

defined by dummy argument ARG1 and fills them with the value specified by

ARG2,ARG3,ARG4,ARG5,ARG6. This also demonstrates the use of MACEXIT and

IFCLEAR. Count is decremented each time the loop is executed successfully. The

macro is called again with the statement RESERVE the arguments following.

RESERVE: .MACRO ARG1,ARG2,ARG3,ARG4,ARG5,ARG6
COUNT: .VAR ARG1

.1FZ COUNT

.1FCLEAR

.MACEXIT

.END1F

COUNT: .VAR COUNT-1
.BYTE ARG2,ARG3,ARG4,ARG5,ARG6
RESERVE COUNT,ARG2,ARG3,ARG4,ARG5,ARG6
.MACEND

This macro would be called with a statement such as the following:

RESERVE 10,AH,BH,CH,DH,EH ; Fill 50 bytes with the sequence ABCDE.

It is perfectly legal for a recursive macro, such as the one in the above example, to call

another recursive macro and so forth out to whatever level is desired. Also, note the use

of the 'FCLEAR directive, which maintains the conditional IF - ENDIF pair balance. This

can be used but is not required because the MACEXIT directive will return all

conditionals to their original state.

1-52
Assembler Error Message

Assembler Error Messages

Error - CAN'T CREATE OUTPUT FILE - DISK MAY BE FULL
Meaning -The disk may actually be full or the operating system is not
allowing enough files to be open at onetime. See System Requirments
to correct this error.

Error -CAN'T OPEN INPUT FILE
Meaning - The operating system is not allowing enough files to be open at one

time. See System Requirements to correct this error.

Error - CAN'T FIND FILENAME.OBJ
Meaning - The .OBJ filename does not exist or the operating
system is not allowing enough files to be open at onetime. See
System Requirements to correct this error.

Error - SYNTAX ERROR

Meaning - Usually a missing comma or parenthesis.

Error - CAN'T RESOLVE OPERAND
Meaning - Can't tell what the programmer intended.

Error -ILLEGAL ADDRESSING MODE
Meaning - Can't address the operand using this form.

Error - ILLEGAL ARGUMENT
Meaning - Operand can't be used here.

Error - MULTIPLY DEFINED SYMBOL
Meaning - Symbol defined previously (not including '.VAR')

Error - ILLEGAL MNEMONIC
Meaning - Mnemonic doesn't exist and wasn't defined as a Macro.

Error - # TOO LARGE
Meaning - The destination is too small for the operand.

1 - 53
Assembler Error Messages

Error - ILLEGAL ASCII DESIGNATOR
Meaning - Bad punctuation on Ascii character.

Error - HEX # AND SYMBOL ARE IDENTICAL
Meaning - A label exists that is exactly identical to a hex number
that is being used as an operand. Even the hex number indicator
must be in the same place for this error to be generated.

Error -UNDEFINED SYMBOL
Meaning - Symbol wasn't defined during pass 1.

Error - RELATIVE JUMP TOO LARGE
Meaning - Destination address in a different page.

Error - EXTRA CHARACTERS AT END OF OPERAND Meaning -
Usually a syntax or format error.

Note - This error is the last check on any instruction before the Assembler
proceeds to the next tine and indicates that there are extra characters after a legal
operand terminator.

Error - LABEL VALUE CHANGED BETWEEN PASSES
Meaning - Symbol value decode during pass 1 not = pass 2.

Note - This error is usually caused by the Assembler taking
different paths on Pass 1 as compared to Pass 2 due to conditional
directive arguments changing value. The directive PASS1 ON/OFF
can be useful in finding these types of errors.

Error - ATTEMPTED DIVISION BY ZERO
Meaning - Divisor operand evaluated to O.

Error -ILLEGAL EXTERNAL REFERENCE
Meaning -External reference can't be used here.

Error -NESTED CONDITIONAL ASSEMBLY UNBALANCE DETECTED
Meaning -Any type instruction without a matching '.ENDIF'

1 -54
Assembler Error Messages

Error - ILLEGAL REGISTER
Meaning - The spectied register is not legal for the instruction

Error - CANT RECOGNIZE NUMBER BASE
Meaning - The number base specified is not one the assembler accepts.

Error - NOT ENOUGH PARAMETERS
Meaning - The were more arguments than parameters in a macro.

Error - ILLEGAL LABEL 1ST CHARACTER
Meaning - Labels must start with an alpha character.

Error - MAXIMUM EXTERNAL SYMBOL COUNT EXCEEDED
Meaning - There were too many externals in a module.
Note - There is a maximum of approximately 500 externals per module.

Error - MUST BE IN SAME SECTION
Meaning - The instructions operand is in a different section.

Error - NON-EXISTENT INCLUDE FILE
Meaning - The include file could not be found.

Error - ILLEGAL NESTED INCLUDE
Meaning - One included file contains an .INCLUDE directive. This error may

also indicate that an included file did not have an END statement.

Error - NESTED SECTION UNBALANCE
Meaning - A nested section definition without an ENDS

Error - MISSING DELIMETER ON MACRO CALL LINE
Meaning - Unmatched delimeters when a macro was invoked.

Error - MULTIPLE EXTERNAL IN THE SAME OPERAND
Meaning - More than one external exists in the same operand.

1 -55
Assembler Error Messages

Error - A LABEL IS ILLEGAL ON THIS INSTRUCTION.
Meaning -This is used to flag labels that would not obtain a
relocation value. Such as ENDM or MACEND. Thus, the label
is not allowed for the instruction.

Error - MACRO STACK OVERFLOW
Meaning - Macros are nested too deeply.

Note -This error can be caused by too many recursive macro
calls. The stack has room for approximately 700 nested or
recursive macro calls.The number of calls is affected by the
number of arguments the macro uses.

Error - MISSING LABEL
Meaning - A label is required for this instruction.

Error - OPERAND MUST BE DEFINED AS AN 8 BIT RELOCATABLE
VALUE. Meaning - This occurs when a 16 bit address is used in an 8 bit
instruction. The < or > sign must be used to make the value relocatable.

Error - MISSING RIGHT ANGEL BRACKET
Meaning - Right angle bracket is mandatory.

Error - MACRO NAME MUST APPEAR ON SAME LINE AS
MACRO DEFINMON

Error - ILLEGAL LOCAL LABELS
Meaning - Labels can't be defined as local. For example .VAR.

Error - MISSING MODULE DIRECTIVE

Error - MISSING ENDMOD DIRECTIVE

Error - 'Module' CAN'T BE IN 'Include' FILE

Error - 'Endmod' CAN'T BE IN 'Include' FILE

1 - 56

