

Cover Index Contents

Preface
This Technical Reference Manual is intended primarily to assist writers of software for the Amstrad
PC1640, although in conjunction with the PC1640 Service Manual it will be of interest to designers of
add-on hardware.

It is assumed that the reader has a working knowledge of the Industry Standard architecture comprising
of an 8086 (or 8088) with DMA, PIT, RTC and Interrupt Controller support chips; plus Extended Graphics
Adapter (or Color Graphics Adapter) with Floppy Disk, Serial and Parallel Adapters.

The information contained herein is largely unique to this document, with the exception of parts of the
appendices which expand on the information contained in the PC1640 User Instructions and the
Microsoft MSDOS Reference Manual.

Whilst the PC1640 implements a superset of the Industry Standard, this manual makes no attempt to
identify those areas of the PC1640 specification which exceed the Industry Standard. Users should,
therefore, exercise caution when writing software for a range of manufacturers' PCs and only use the
"Lowest Common Denominator" facilities if simple portability is required.

© Copyright 1987 AMSTRAD Plc.

Neither the whole nor any part of the information contained herein, nor the product described in this
manual may be adapted or reproduced in any form except with the prior approval of AMSTRAD Plc.

All information of a technical nature and particulars of the product are given by Amstrad in good faith.
However, it is acknowledged that there may be errors or omissions in this manual.

All correspondence should be addressed to:

Amstrad Consumer Electronics Plc
Brentwood House
169 Kings Road

Brentwood
ESSEX CM14 4EF

All maintenance and service on the product must be carried out by Amstrad authorised dealers.
Amstrad cannot accept any liability whatsoever for any loss or damage caused by service or
maintenance by unauthorised personnel. This manual is intended to assist the reader in the use of the
product, and therefore Amstrad shall not be liable for any damage or loss whatsoever arising from the
use of any information or particulars in, or any error or omission in, this manual or any incorrect use of
the product.

Written by Bill Weidenauer, AMSTRAD plc.

Published by Amstrad.

First Published 1987.

MS-DOS(R) is a registered trademark of Microsoft(R) Corporation

AMSTRAD PC1640 is a registered trademark of AMSTRAD plc.

AMSTRAD is a registered trademark of AMSTRAD plc.

Unauthorised use of the trademark or the word AMSTRAD is strictly forbidden.

Cover Index Contents

Intro Index Section 1

Table of Contents:

Section 1 - Hardware

1.0 Introduction 1

1.1 CPU 1

1.2 Memory Layout 2

1.3 Main Board I/O Channels 3

1.4 Expansion Bus I/O Channels 5

1.5 DMA 5

1.5.1 DMA Page Registers 6

1.5.2 DMA Initialisation 7

1.6 System Interrupts 7

1.6.1 Interrupt Levels 8

1.6.2 Interrupt Controller initialisation 8

1.6.3 NMI Mask Control 9

1.7 Programmable Interval Timers 9

1.7.1 Timer Configuration 10

1.8 System Status and Control 10

1.8.1 Port B - System Control 10

1.8.2 Port A - Status-1 Input/Keyboard Code 11

1.8.3 Port C - Status-2 Input 12

1.8.4 Write System Status-1 13

1.8.5 Write System Status-2 14

1.8.6 System Reset 14

1.9 Real Time Clock 15

1.10 Parallel Printer Port 16

1.10.1 Printer Data Latch 16

1.10.2 Printer Control Latch 17

1.10.3 Printer Status Channel 18

1.11 The Internal Graphics Adapter 19

1.11.1.1 Color Alpha Display 21

1.11.1.2 Monochrome Alpha Display 23

1.11.2.1 Color Graphics Display 24

1.11.2.2 Low Resolution (320x200) Graphics 25

1.11.2.3 Medium Resolution (640x200) Graphics Mode 26

1.11.2.4 High Resolution (640x350) Graphics Mode 26

1.11.2.5 IGA BIOS Modes 27

1.11.3 IGA Control Registers 28

1.11.4 IGA BIOS EGA Mode Initialization 63

1.11.5 Color Graphics Adpater Compatible Registers 64

1.11.5.1 CGA Mode Control Register 64

1.11.5.2 CGA Color Select Register 66

1.11.5.3 CGA Status Register 67

1.11.5.4 CGA Mode 6845 CRTC Emulation 67

1.11.5.5 CRTC Display Addressing 67

1.11.6 Monochrome Graphics Adapter Compatible Registers 69

1.11.6.1 MDA Mode Control Register 69

1.11.6.2 MDA Status Register 70

1.11.6.3 6845 CRTC Emulation 70

1.11.7 Hercules Compatible Emulation 71

1.11.7.1 HMGA Mode Control Register 71

1.11.7.2 HMGA Status Register 71

1.11.7.3 6845 CRTC Emulation 74

1.12 Floppy Disk Controller 76

1.12.1 FDC Hardware Conditions 76

1.13 RS232C Asynchronous Serial Port 77

1.13.1 Serial Channel Interface 77

1.13.2 Serial Channel Pin Arrangement 78

1.14 Parallel Printer Interface 78

1.15 Keyboard Interface 80

1.15.1 Serial Clock and Serial Data 80

1.15.2 Keyboard to Main Board Interface 80

1.15.3 Main Board to Keyboard Interface 80

1.15.4 Keycodes 81

1.15.5 Keyboard Connector 81

1.16 Mouse Interface 82

1.16.1 Mouse Connector 82

1.17 Joystick Interface 84

1.17.1 Joystick Connector 84

1.18 Light Pen Connector 85

1.19 Expansion Card Interface 86

1.20 Video Connector 89

1.21 Power Connector 90

1.22 Display Selector Switch Settings 91

2.0 Firmware 93

2.1 Power-Up Initialisation and Self Test 94

2.2 Power-Up Self Tests 98

2.2.1 Test Procedure 99

2.2.2 Test Methods 100

2.2.3 ROS Checksum Test 100

2.2.4 Direct Memory Access Controller Test 100

2.2.5 Programmable Interval Timer Test 100

2.2.6 Programmable Peripheral Interface Test 101

2.2.7 Real Time Clock Test 101

2.2.8 Asynchronous Communications Element Test 101

2.2.9 Printer Parallel Port Test 101

2.2.10 Mouse X and Y Count Register Test 101

2.2.11 System RAM Test 102

2.2.12 Programmable Interrupt Controller Test 102

2.2.13 Disk Test 102

2.2.14 Keyboard Interface Test 102

2.3 ROM Firmware Interrupts 102

2.3.1 Interrupt 2: Parity Error (NMI) 102

2.3.2 Interrupt 5: Print Screen 103

2.3.3 Interrupt 6: Mouse Button Control 103

2.3.4 Interrupt 8: System Clock Interrupt 104

2.3.5 Interrupt 9: Keyboard Interrupt 105

2.3.5.1 Special Key Actions 108

2.3.6 Interrupt 14: Floppy Disk Controller 110

2.3.7 ROS Interrupt 16: '6845 Compatible' Video I/O 111

2.3.8 IGA Interrupt 16: 'EGA Compatible' Video I/O 121

2.3.9 Interrupt 17: System Configuration 136

2.3.10 Interrupt 18: Memory Size 136

2.3.11 Interrupt 19: Disk I/O 137

2.3.11.1 Hard Disk Call parameters and registers 140

2.3.12 Interrupt 20: Serial I/O 143

2.3.13 Interrupt 21: Enhanced Function Interrupt 147

2.3.14 Interrupt 22: Keyboard I/O 149

2.3.15 Interrupt 23: Printer I/O 151

2.3.16 Interrupt 24: System Restart 153

2.3.17 Interrupt 25: Disk Bootstrap 153

2.3.18 Interrupt 26: System Clock & Real Time Clock 154

2.3.19 Interrupt 27: Keyboard Break Interrupt 158

2.3.20 Interrupt 28: External Ticker Interrupt 158

2.3.21 Interrupt 29: VDU Parameter Table 159

2.3.22 Interrupt 30: Disk Parameter Table 160

2.3.23 Interrupt 31: VDU Matrix Table 161

2.4 System RAM Variables 161

2.5 Non-Volatime RAM 169

2.6 ROS Messages 170

2.6.1 Non-Fatal ROS Messages 170

2.6.2 Fatal Messages 171

3.0 Reference Information 172

3.1 Language Links 172

3.2 Processor Memory Usage 173

3.3 Keyboard and Key Codes 174

3.4 ACE (8250) Registers 176

3.5 DMA Controller (8237A-4) Registers 179

3.6 PIC (8259-A) Command Words 182

3.7 Programmable Interval Timer (8253) Registers 185

3.8 Real Time Clock (HD146818) Registers 186

3.8.1 Time Calendar & Alarm Locations 187

3.8.2 RTC Register Locations 189

3.9 Floppy Disk Controller (uPD765A) 191

Appendix 1: Mouse Software Interfaces 208

Appendix 2: MS-DOS System Configuration 220

Appendix 3: Country Dependent Information for MS-DOS 3.2 226

Appendix 4: RS232C Connections 227

Appendix 5: Printer Lead (PL-2) Wiring Specification 236

Appendix 6: Power Supply Requirements 237

Appendix 7: ROM Character Set 238

Appendix 8: Keyboard Keycodes 240

Appendix 9: Keyboard Layouts 241

Appendix 10: The Linker Program (MS-LINK) 247

Appendix 11: System Commands Processor (COMMAND.COM) 264

Appendix 12: The DEBUG Utility Program (DEBUG) 265

Appendix 13: The EXE2BIN Utility Program 290

Appendix 14: The EXIT Command 291

Appendix 15: The RECOVER Utility Program 292

Appendix 16: The SHARE Utility Program 293

Intro Index Section 1

Contents Index Section 2

AMSTRAD PC1640 TECHNICAL MANUAL

1.0 Introduction

This manual provides a comprehensive description of the AMSTRAD PC1640 hardware and firmware. General information about
the PC1640, GEM Desktop and the delivered operating system software is contained in the AMSTRAD PC1640 USER GUIDE. This
manual is intended to satisfy the needs of advanced developers who must have access to the various resources available within
the PC1640.

Note that all address constants in this document are hexadecimal. In addition hexadecimal quantities are noted with small letter 'h'
terminator to denote that they are in hexadecimal form. Address quantities are not usually annotated this way since they are clearly
hexadecimal. Values are presented in hexadecimal form when they are logically bit oriented quantities rather than of purely
numerical significance.

1.1 Central Processing Unit (CPU)

The CPU is an 8086-2 microprocessor with 1 Megabyte memory addressing capability (See Figure 1), running at a clock frequency
of 8MHz. The CPU is connected to an on-board 16-bit system memory bus requiring four 125nS timing cycles (T-States) per access
resulting in a 500nS memory cycle for 16-bit memory. The CPU is also connected on an on-board 8 bit I/O and memory peripheral
bus with a 4 MHz clock, which in turn connects to an external expansion bus. Operations on the 8-bit bus automatically incur 125nS
wait states as follows:

Operation Wait States Bus Cycle

8-bit (Memory) 4 1.0 uS
16 to 8-bit convert (Memory) 12 2.0 uS
8-bit (I/O) 6 1.25 uS
16 to 8-bit convert (I/O) 16 2.5 uS

The CPU is configured to run in maximum mode and the instruction set may be optionally extended by the addition of an 8087-2
Numeric Data Coprocessor. The 8087 BUSY output is connected directly to the 8086 NOT TEST input.

1.2 MEMORY LAYOUT

The main board memory consists of 640K bytes of system RAM with parity checking and 16K bytes of system ROM without parity
checking.

The 640K byte user RAM starts at CPU memory address 00000 and extends to 9FFFF.

The 128K byte address space from A0000 to BFFFF is reserved for video regeneration buffers, and is not used by CPU programs.
The PC1640 Internal Graphics Adapter (IGA) uses the full 128K byte range or segments of this memory range depending on the
display mode (see section 2, Video I/O Int 16). External display adapters also use this memory address range for their display
buffers.

00000
ON-BOARD

DYNAMIC RAM

640K BYTE
SYSTEM
MEMORY
RANGE9FFFF

A0000 128K BYTES
VIDEO DISPLAY BUFFERSBFFFF

1M BYTE
ADDR

RANGE

C0000 192K BYTES
EXPANSION ROMS

C8000 - C9FFF : HD ROM

C0000 - C7FFF : IGA ROMEFFFF

F0000 48K BYTES
ROS ROM BLOCK REPEATS

64K BYTE
SYSTEM

ROM AREA
FBFFF

FC000 16K BYTES (ROS)

RESIDENT OPERATING SYSTEM ROM
FFFFF

The 192K byte address space from C0000 to EFFFF is reserved for external expansion ROM address space. When the Internal
Graphics Adapter is enabled, it uses the space from C0000 to C1FFF for its bios (executable) code and the area from C2000 to
C7FFF for its fonts. The optional Hard Disk controller uses the range from C8000 to C9FFF. Additional hard disk controllers may
also use the area from CA000 to CD000. The PC1640 test board uses the ROM area from E0000 to E7FFF.

The 16K byte system ROM is at FC000 to FFFFF and contains the Resident Operating System (ROS) firmware. The 48K byte
address range from F0000 to FBFFF is reserved for ROM space expansion. The 16K byte ROS area address bits are partially
decoded such that the ROS ROM repeats four times in the F0000 to FFFFF address range.

1.3 MAIN BOARD I/O CHANNELS

The interfaces on the main board occupy the 8086 I/O addresses as follows:

ADDRESS(hex) OUTPUT USE INPUT USE

000 - 00F 8237 DMA Controller 8237 DMA Controller
010 - 01F Do Not Use Do Not Use
020 - 021 8259 Interrupt control 8259 Interrupt control
022 - 03F Do Not Use Do Not Use
040 - 042 8253 PIT Load Count (0-2) 8253 PIT Read Count (0-2)
043 8253 PIT Load Mode Undefined
044 - 05F Do Not Use Do Not Use
060 No Effect Port A - Keyboard Code or System Status 1
061 Port B - System Control Port B - (Readback)
062 No Effect Port C - System Status-2
063 No Effect Do Not Use
064 Write System Status-1 Do Not Use
065 Write System Status-2 Do Not Use
066 System Reset Do Not Use
067 - 06F Do Not Use Do Not Use
070 146818 RTC Address Do Not Use
071 146818 RTC Data 146818 RTC Data
072 - 077 Do Not Use Do Not Use
078 Clear Mouse X-Coordinate Mouse X-Coordinate
079 Do Not Use Do Not Use
07A Clear Mouse X-Coordinate Mouse X-Coordinate
07B - 07F Do Not Use Do Not Use
080 Do Not Use Do Not Use
081 DMA Page Register Ch 2 Do Not Use
082 DMA Page Register Ch 3 Do Not Use
083 DMA Page Register Ch 0,1 Do Not Use
084 - 09F Do Not Use Do Not Use
0A0 NMI Mask Control Do Not Use
0A1 - 0BF Do Not Use Do Not Use
0C0 - 0FF Reserved Reserved
378 Printer Data Latch Printer Data Latch
379 Do Not Use Printer Status
37A Printer Control Latch Printer Control Latch
37B - 37F Do Not Use Do Not Use
3B0 - 3BF Mono Mode CRTC Registers Mono Mode CRTC Registers
3C0 - 3CF Video Controller Registers Video Controller Registers
3D0 - 3DF Color Mode CRTC Registers Color Mode CRTC Registers
3F0 - 3F1 Do Not Use Do Not Use
3F2 Drive Selection Do Not Use
3F3 Do Not Use Do Not Use
3F4 Do Not Use 765 FDC Status
3F5 765 FDC Data 765 FDC Data
3F6 - 3F7 Do Not Use Do Not Use
3F8 - 3FF 8250 UART Tx Data/Control 8250 UART Rx Data/Control

1.4 EXPANSION BUS I/O CHANNELS

The 8086 CPU I/O addresses on the expansion bus are as follows:

ADDRESS(hex) USE

200 - 20F External Game Control Interface
210 - 217 External Bus Expansion Unit
220 - 24F Reserved
278 - 27F External Printer Port
2F0 - 2F7 Reserved
2F8 - 2FF External Asynchronous Serial RS232C Port

ADDRESS(hex) USE

300 - 31F External Prototyping Card
320 - 32F External Hard Disk Controller
380 - 38F External SDLC Serial RS232C Port
3A0 - 3AF Reserved
3B0 - 3BB External Monochrome VDU Controller
3BC - 3BF Printer Port
3C0 - 3CF External Graphics Controller
3D0 - 3DF External Color/Graphics Controller

I/O address above 03FFh, if accessed, wrap around and are mapped onto the range 0000h-03FFh.

External cluster controllers at 0790h-0793h, 0B90h-0B93h, 1390h-1393h and 2390h-2393h wrap around to I/O addresses
0390h-0393h respectively.

1.5 Direct Memory Access (DMA)

The Amstrad PC 1640 supports four DMA channels on the system board, using an 8237-4 DMA controller and programmable page
registers to extend its addressing range from 64k bytes to the full 1M byte processor address range. Each channel is able to
transfer data in blocks of up to a maximum of 64K bytes within a page. The DMA channels are for 8-bit data transfers between (8-bit)
I/O devices and 8-bit or 16-bit memory.

In peripheral (slave) mode, CPU I/O address lines A0 - A3 are connected conventionally so that 16 command codes appear in the
order described in the 8237 data sheets (See section 3.5).

The DMA controller CLK is driven at 4MHz (+/- 0.1%). In master mode during DMA transfers on channels 1,2 and 3, one wait state is
added resulting in a five-clock DMA bus cycle of 1.25uS. Channel 0 transfers have a four-clock bus cycle of 1uS.

The DMA channel request signals are as follows:

DMA Channel USE

0 8253 Timer/Counter OUT1 output - for memory refresh.
1 Spare for use by expansion bus. Used by external SDLC Serial Port.
2 765 Floppy Disk Controller DRQ output. Available on the expansion bus.
3 Spare for use by expansion bus. Used by external Hard Disk Controller.

1.5.1 DMA Page Registers

DMA channels 1, 2 and 3 can address the entire 1M byte addressing range of the CPU through the use of their associated DMA
page registers. There are three DMA registers, one each for channels 1 through 3. Each page register defines for its channel which
one of sixteen 64K byte pages in the 1M byte address range DMA transfers are to occur. The page registers are static so that
modulo 64K byte addressing occurs at page boundaries.

The DMA page register bit assignments are as follows:

Bit Output Use

7-4 Not Connected
3 Address bit A19
2 Address bit A18
1 Address bit A17
0 Address bit A16

1.5.2 DMA Initialisation

Following a reset, system (ROS) initialisation firmware (in the ROS) sets up the 8237 DMA controller for channel 0 (dynamic refresh)
operation as follows:

Function Initialised State

Word Count 64K Transfers
Mode
Register

Read
Autoinitialise

Function Initialised State

Increment
Single Mode

Command
Register

Disable Memory to Memory
Enable Controller
Normal Timing
Fixed Priority
Late Write
DREQ Active High
DACK Active Low

Mask
Register

Clear Channel 0 Mask Bit

After power-up or system reset the DMA page registers are undefined and are initialised to zero by the ROS firmware and all 8237
internal locations for channels 1-3 are initialised to a state comparable to the channel zero initialisation above.

Following industry compatibility, memory to memory DMA is not supported on the PC1640. It is prohibited due to timing
considerations.

1.6 System Interrupts

Nine levels of hardware interrupt are provided for in the system by the CPU Non Maskable Interrupt (NMI) and by an 8259A-2
Interrupt Controller. All levels including NMI, are maskable under software control.

CPU I/O address line A0 is connected conventionally so that the command codes appear in the order described in the 8259 data
sheets. The SP/EN pin is tied high signifying that the device is to be hardware un-buffered and designated as a master, not a slave.

1.6.1 Interrupt Levels

The interrupt levels are assigned as follows:

Level Assigned Function

NMI Memory Parity Error and 8087 NDP INT output.
0 8253 Timer/Counter Out0 output.
1 Keyboard Scan Code Receiver.
2 146818 Real Time Clock IRQ output.

Available on the expansion bus.
3 Spare for use by expansion bus.

Used by external (secondary) Asynchronous Serial Port
and external SDLC Serial Port.

4 8250 UART INTRPT output. Available on the expansion bus.
Used by external SDLC Serial Port.

5 Hard Disk Controller. Available on the expansion bus.
6 765 Floppy Disk Controller INT output.

Available on the expansion bus.
7 Parallel Printer Port.

Available on the expansion bus.
Used by external Printer Port (secondary) and Printer Port (ternary) on external Monochrome VDU Controller.

The system (ROS) firmware initialises the 8259 address bits such that IRQ0 through IRQ7 appear in the CPU interrupt vector space
at interrupts 8 through 15 repectively. NMI appears at CPU interrupt vector 2.

1.6.2 Interrupt Controller Initialisation

Following a reset, the initialisation firmware in the ROS sets the 8259 Interrupt Controller to operate as follows:

8086 system, Single (not cascaded),
Normal fully nested (not special),
Edge-triggered,
Buffered mode - slave,
Normal EOI (not auto),
Fixed priority - level 0 highest, level 7 lowest.

The system (ROS) firmware initialises the 8259 address bits such that IRQ0 through IRQ7 appear in the CPU interrupt vector space
at interrupts 8 through 15 respectrively. NMI is configured to CPU interrupt vector 2.

1.6.3 NMI Mask Control

The NMI Mask Control is a write only register at I/O address 0A0h and allows the CPU non-maskable interrupt (NMI) input to be
enabled or disabled by software. The Bit assignments are as follows:

Bit Output Use

7 Enable NMI.
6 - 0 Not Connected

Following a reset NMI is disabled.

NMI can be connected to the 8087 NDP, the on-board memory parity check circuit, and the expansion bus I/OCHCK (I/O Channel
Check).

1.7 Programmable Interval Timers

Three programmable timer/counters are provided at I/O Addresses 040 - 043 by an 8253 Programmable Interval Timer (PIT) device.
They are defined as follows:

Counter Use

0 General Purpose Timer.
1 Used by DMA channel 0 (for dynamic ram refresh).
2 Tone Generation for Speaker.

1.7.1 Timer Configuration

The 8253 timers are configured as follows:

Function Configuration

CLK
0,1,2

1.193 MHz +/- 0.1% (54.925493 ms per count)

GATE 0,1 Always 'ON'.
GATE 2 Controlled via Port B (System Control Channel) Speaker Modulate output.
OUT 0 Interrupts on 8259 PIC IR0 input.
OUT 1 Requests on 8237 DMA DREQ0 input.

OUT 2
Logical 'AND' with Port B (System Control Channel) Speaker Drive output. Also goes to Port C (System Status-2 Channel)
as an input.

1.7.2 Counter 1 initialisation

Following a reset, the system initialisation firmware in the ROS programs the 8253 PIT for counter 1 (dynamic ram refresh)
operation as a rate generator producing a signal with a period of 15.13 uS. There are no restrictions requiring the initialisation and
programming of counters 0 and 2.

1.8 System Status and Control

Two system status input channels and four output channels are provided on-board. Ports A, B and C emulate a pre-programmed
8255 PPI device. They are located in the I/O address space in the range 060h - 06Fh. Port B is programmed for control output, Port A
is programmed either for Status-1 input or for receiving data from the keyboard, and Port C is programmed for Status-2 input.

Ports A, B and C emulate an 8255 PPI that has been set up as follows:

Group A Mode 0, Group B Mode 0,
Port A = input, Port B = output,
Port C(U) = input.Port C(L) = input.

Unlike an 8255, power-up and reset do not affect this configuration.

1.8.1 Port B - System Control

The System Control channel is located at I/O Address 061h. Its bit assignment is as follows:

Bit (PBn) Output Use

7 Enable Status-1/Disable Keyboard Code on Port A.
6 Enable incoming Keyboard Clock.
5 Prevent external parity errors from causing NMI.

(Also Disable any pending NMI).
4 Disable parity checking of on-board system Ram.
3 Undefined (Not Connected).
2 Enable Port C LSB / Disable MSB. (See 1.8.3)
1 Speaker Drive.
0 8253 GATE 2 (Speaker Modulate).

When bit 7 is set high, Status-1 data is enabled on Port A, the keyboard data path and keyboard interrupts are disabled. When bit 7
is set low, keyboard input data is enabled on port A, the keyboard data path and keyboard interrupts are enabled. Applications
software which sets PB7 must restore it to the cleared state else the keyboard may be rendered inoperable.

The keyboard interface operates as follows: Each incoming keycode is latched on-board, causing a keyboard interrupt (on level 1).
While the interrupt remains pending, the incoming keyboard data signal is forced low as an acknowledgement to the keyboard that
the keycode has been received. As soon as the interrupt has been cleared, the keyboard may use the Data signal to transmit the
next keycode.

PB5 when set prevents an external parity error (ie. an I/OCHCK condition on the expansion bus) from causing NMI, even if NMI is
unmasked. When NMI has been triggered and latched it may be cleared by pulsing PB5 (if the external device has removed its
I/OCHCK signal).

PB2 when set enables the reading of the four LS bits of the RAM fitted indicator on Port C. When PB2 is clear the top (MS) bit of the
RAM fitted indicator is read (see 1.8.3).

PB1 may be toggled to drive the speaker with a corresponding pulse train. The speaker may also be driven by a wave form from the
8253 PIT OUT2 output (simultaneously with PB1).

PB0 may be toggled to drive the 8253 gate input, hence modulate counter 2operations and therefore driving the speaker which may
all be performed simultaneously to create various audio effects.

1.8.2 Port A - Status-1 Input/Keyboard Code

Port A is a read only location located at I/O Address 060h. The bit assignments for Port A are as follows:

Bit (PAn) Status-1 Keyboard Input

7 Always 0. KBD7
6 Second Floppy disk drive installed. KBD6
5 DDM1 - Default Display Mode bit 1. KBD5
4 DDM0 - Default Display Mode bit 0. KBD4
3 Always 1. KBD3
2 Always 1. KBD2
1 8087 NDP installed. KBD1
0 Always 1. KBD0

When Port B, Bit 7 (PB7) is set to high, reading Port A loads Status-1. When PB7 is set low, reading Port A loads keyboard data.

The Default Display Mode bits (DDM1, DDM0) are set up by the ROS during system initialisation as follows:

DDM1 DDM0 Default Display Mode Selected

0 0
Internal Graphics Adapter (IGA) Enabled
or Extended Adapter Installed in Expansion Bus.

0 1
Colour Graphics Adapter Installed in the Expansion Bus
with alpha, 40 X 25 chars, bright white on black.

1 0
Colour Graphics Adapter Installed in the Expansion Bus
with alpha, 80 X 25 chars, bright white on black.

1 1 External Monochrome Controller, 80 X 25 chars.

When the Internal Graphics Adapter (IGA) is enabled then switches 1 - 5 determine what the default display mode is and whether
the IGA is the primary or the secondary adapter. See section 1.22 for these details.

When the Internal Graphics Adapter (IGA) is disabled then the ROS uses the position of display selector switches SW6, SW7 and
SW10 to determine the default display mode.

When an EGA or another adapter is installed then its particular User's/Hardware manual is the best guide to its display modes or
other features.

Following a reset, the ROS then sets the initial video state is based on the DDM value. Section 2.3.7 gives additional details of the
ROS Video Mode settings.

1.8.3 Port C - Status-2 Input

Port C is a read only location located at I/O Address 062h. Its bit assignments are as follows:

Bit (PCn) Input Use

7 On-board system RAM parity error.
6 External parity error (I/OCHCK from expansion bus).
5 8253 PIT OUT2 output.

4 Undefined.

LSB or MSB (depends on PB2)

3 RAM3 Undefined
2 RAM2 Undefined
1 RAM1 Undefined
0 RAM0 RAM4

PC7 is forced to the zero state when on-board system RAM parity checking is disabled by PB4.

When the I/OCHCK condition (external parity error) from the expansion bus is disabled from causing NMI (by PB5 set high), PC6
reflects the state of the I/OCHCK input else it reflects the latched state of I/OCHCK.

The value of RAM4-RAM0 denotes the amount of system RAM fitted to the system as follows:

RAM4 RAM3 RAM2 RAM1 RAM0

0 1 1 1 0 512K bytes.
0 1 1 1 1 544K bytes.
1 0 0 0 0 576K bytes.
1 0 0 0 1 608K bytes.
1 0 0 1 0 640K bytes.

Since the PC1640 comes with 640K of RAM fitted the expected value should always be 640K bytes. Any other value indicates an
installed memory configuration error.

See section 1.8.1 for the Control Port B setting for reading RAM fitted segment bits.

1.8.4 Write System Status-1

The Write System Status-1 register (WSS1) is a write only register at I/O Address 064h and is initialised by the Resident Operating
System (ROS) firmware based on values obtained from configuration switches 4 and 5. It is used in conjunction with the 8255 PPI
Port A emulation. The bit assignments are as follows:

Bit Output Use

7 No effect.
6 PA6 - Second Floppy disk drive installed.
5 PA5 - DDM1.
4 PA4 - DDM0.
3 No effect.
2 No effect.
1 PA1 - 8087 NDP installed.
0 No effect.

1.8.5 Write System Status-2

The Write System Status-2 register is a write only register at I/O Address 065h and is initialised by the Resident Operating System
(ROS) firmware based on the memory size check perfomed during Power On Self Test. It is used in conjunction with the 8255 PPI
Port C emulation. The bit assignments are as follows:

Bit Output Use

7 PC2 (MSB) - Undefined.
6 PC1 (MSB) - Undefined.
5 PC0 (MSB) - Undefined.
4 PC3 (MSB) - RAM4.
3 PC3 (LSB) - RAM3.
2 PC2 (LSB) - RAM2.
1 PC1 (LSB) - RAM1.
0 PC0 (LSB) - RAM0.

Since the PC1640 comes with 640K on the main board the expected value of PC3 - PC0 is binary 10010.

1.8.6 System Reset

Any write access to I/O Address 066h regardless of the value written will cause the hardware to generate an immediate 512uS
system reset and pulse the reset line on the expansion bus. The contents of the on-board system RAM is preserved following a
system reset.

1.9 Real Time Clock

A HD146818 Real Time Clock plus RAM device is installed and backed up by a set of four non-rechargable size AA batteries. The
clock device provides a time of day clock with alarm, a one hundred year calendar, a programmable periodic interrupt, and 50 bytes
of static RAM. The static RAM is called the Non-Volatile RAM (NVR) and used to store system configuration data such as number of
disk drives, memory size, serial I/O parameters, and default VDU screen mode. The ROS firmware maintains a checksum of the
NVR and will reset the configuration data to 1sensible values1 during startup whenever the checksum value is incorrect (thus
destroying your actual configuration). Even though direct hardware access to the NVR is possible it is recommended that the
programs make use of the ROS Enhanced Function Interrupt (Interrupt 21) to access the NVR because these properly maintain the
NVR checksum value.

When system power is off and the 146818 is on battery backup power, the functions which remain active are the clock and the
retention of RAM data. No battery power is used while the system power is on.

The input crystal oscillator runs at 32.768 KHz and the 146818 interrupt request is connected to the 8259 system interrupt controller
on level 2 (which is also available on the expansion bus). The 146818 power-sense input PS is connected to a battery condition
sensor. When the backup battery voltage is sufficiently low, the VRT bit in register D becomes set indicating that the time, the
calendar and the NVR data are no longer valid. When this condition is noted during startup, the firmware outputs the message
"Please fit new batteries" and resets the NVR to default values (See section 2.4).

All the features described in the 146818 data sheet are available with the exceptions that the CKOUT (clock output) and SQW
(square wave output) pins are not connected on the main board.

Writing or reading the NVR involves a two step sequence for each byte that is accessed. The RTC Address channel (I/O Address
070) is first loaded with the NVR location to be accessed. Then the RTC Data channel (I/O Address 071) is either written or read to
complete the I/O operation. This facility should be used with caution in order to avoid disturbing the system configuration data.

1.10 Parallel Printer Port

The printer port provides an interface for driving 8-bit and 7-bit Centronics compatible printers. The timing of the signals to the
printer is under direct software control. There is a read/write control latch for sending control signals to the printer, an unlatched
read-only printer status channel, and a read/write data latch for sending printer data.

In addition the printer control latch can be read to obtain system type and switch information.

1.10.1 Printer Data Latch

The printer data latch is a read/write record at I/O address 378 and its layout is as follows:

Bit (Dn) Output/Input Use Cable Polarity

7 Data 7 Hi
6 Data 6 Hi
5 Data 5 Hi
4 Data 4 Hi
3 Data 3 Hi
2 Data 2 Hi
1 Data 1 Hi
0 Data 0 Hi

The contents of the data latch are undefined following a power-up or system reset.

1.10.2 Printer Control Latch

The printer control latch is a read/write record at I/O address 37A and its layout is as follows:

Bit Output/Input Use Reset State Cable Polarity

7 PC1640 SW7 [RO]
6 PC1640 SW6 [RO]
5 OPT (1640)/1 (1512) [RO]
4 Enable Int on ACK False
3 Select Printer False Low
2 Not Reset Printer True Low
1 Select Auto Feed False Low
0 Data Strobe False Low

Bit D7 is a read-only bit which reflects the state of switch 7 (at the back of the machine) and returns a logic "1" when the switch is in
the "on" position and a logic "0" if in the the "off" position.

Bit D6 is a read-only bit which reflects the state of switch 6 (at the back of the machine) and returns a logic "1" when the switch is in
the "on" position and a logic "0" if in the the "off" position.

Bit D5 is the option (OPT) bit and can return one of three different pieces of information. Although not documented as such on the
PC1512, Bit D5 was always a "1", however on the PC1640 it will always be a zero if immediately prior to the read of channel 037Ah
the software performs an I/O read of an I/O channel implemented on the PC1512 main board, having address line A7 high (for
example, the CGA channels). This is a simple test for software to detect whether it is running on a PC1512 or a PC1640. A PC1512
will give a 1, whereas a PC1640 will give a 0.

In addition to being a test of machine type the OPT bit, D5, can also reflect the state of either SW9 or SW10. The OPT bit will reflect
the state of switch SW9 by an I/O read operation to an I/O channel not implemented on the main board and having address lines
A14 and A7 both low (for example channel 0278h) immediately prior to the reading of channel 037Ah. The OPT bit is set to the state
of switch SW10 by an I/O read operation to an I/O channel not implemented on the main board having address lines A14 high and
A7 low (for example channel 4278h). Software testing OPT bit should disable interrupts before the initial (dummy) channel read and
the I/O read of channel 037A in order to avoid additional (interrupt based) I/O operations between the setting and the testing of the
information read back in the OPT bit. For switches SW9 and SW10, a logic "1" is returned when the switch is on the "on" position
and a logic "0" if the switch is in the "off" position.

When Interrupt on ACK is enabled an incoming Printer Acknowledge condition will cause a system interrupt on level 7 (which is also
available on the expansion bus).

If the printer control lines normally driven via latched bits D0 - D3 are driven externally, the data read on input to this channel will be
the logical OR of the latched bits and the externally driven bits, e.g. If a data bit is false and the corresponding cable bit is driven true
by the external driver, the bit input will be true.

Following power-up or system reset, the control latch contents assume reset conditions as shown.

Note that this is a general purpose printer interface and that not all printers require all the control signals, hence the provision for
non-standard printers to be able to drive some of the control signals as inputs to the main board. The timing requirements on
Centronics compatible printers generally specify that data must be present at 1uS before the strobe is made active, and must
remain valid for at least 1uS after strobe goes inactive. The strobe duration must be between 1uS and 500 uS. Printer Busy status
can be inspected as soon as the strobe is inactive in order to determine when more data can be sent.

1.10.3 Printer Status Channel

The Printer Status Channel is a read only register at I/O Address 0379h. Its layout is as follows:

Bit Input Use Cable Polarity

7 -Printer Busy High
6 -Printer Acknowledge Low
5 Paper Out High
4 Printer Selected High
3 -Printer Error Low
2 -LK3 fitted
1 -LK2 fitted
0 -LK1 fitted

LK1 - LK3 are general purpose factory installed option links on the main board which are used by the system ROM Operating
System (ROS) firmware to distinguish national variant machine configurations. The ROS will produce its sign-on message and
error messages in one of seven languages. The first seven states (0 - 6) are used for language variants and the eighth (7) state is
used extended diagnostic mode testing (See section section 2.2). Since the link state is inverted, the value obtained from the lower
three bits of the printer port must be exclusive or'ed (XOR) with 1's to obtain the language number.

LK1 LK2 LK3 ROS Language

OFF OFF OFF English.
OFF OFF ON German.
OFF ON OFF French.
OFF ON ON Spanish.
ON OFF OFF Danish.
ON OFF ON Swedish.
ON ON OFF Italian.
ON ON ON Diagnostic Mode. (English)

Note that this is a general purpose printer interface and that not all printers implement all the status lines, nor do they all attach the
same meanings to the error conditions.

Printer Busy normally indicates that a printer cannot receive data, for example during data entry, printing, when offline, or during a
printer error condition.

Printer Acknowledge, if implemented is generally asserted by a printer to indicate that data has been received and the printer is
ready to receive the next data. Note that Printer Acknowledge (ACK) can also be set to cause interrupts (See 1.10.3).

Section 1.14 contains the printer connector pin assignments.

1.11 The Internal Graphics Adapter.

The Internal Graphics Adapter (IGA) is a gate array on the main board which provides either an Extended Graphics Adapter (EGA)
mode, or a Color Graphics Adapter (CGA) mode or a Monochrome Display Adapter (MDA) mode. Additional Hercules monochrome
adapter modes and Plantronics (Color) adapter functions are also supported.

The video screen memory (or regeneration buffer) is the 128K byte range from A0000 to BFFFF and its configuration varies
depending on the selected display mode. The regeneration buffer origin (ie the starting address) may be configured to either A0000,
B0000 or B8000 with sizes varying from 2K bytes to 32K bytes. (See 1.11.2.5).

When an Extended Color (PC-ECD) Display is fitted the IGA is capable of displaying up to 64 different colors in EGA mode with a
resolution of 640 dots x 350 lines. The CGA and Plantronics display modes supports 16 colors (for Extended Color Displays and
standard Color Displays) with a resolution of up to 640 dots by 200 lines.

For the PC-MD monochrome display, the IGA supports black and white text in normal, intense, blink, or underline with a resolution of
720 by 350 in text modes. The maximum monochrome Graphics resolution is 640 x 350 or 720 x 348 resolution graphics for
Hercules compatible monochrome.

For color systems, when an initial mode change is set up via the ROM BIOS, a set of sixteen color palette registers are loaded with
standard values such that a standard IRGB color selection is available for sixteen total colors available on the display. The color
attribute fields (discussed later) and the color plane selections relate to the standard sixteen color palette format as follows:

Intensity Red Green Blue Colour

Intensity Red Green Blue Colour

0 0 0 0 Black
0 0 0 1 Blue
0 0 1 0 Green
0 0 1 1 Cyan
0 1 0 0 Red
0 1 0 1 Magenta
0 1 1 0 Brown
0 1 1 1 White
1 0 0 0 Grey
1 0 0 1 Light Blue
1 0 1 0 Light Green
1 0 1 1 Light Cyan
1 1 0 0 Light Red
1 1 0 1 Light Magenta
1 1 1 0 Yellow
1 1 1 1 Intense White

Note that the Extended color display (PC-ECD) supports 64 colors using a 6-wire rgbRGB color scheme (where the capital letters
represent 2/3 intensity primary color signals and the small letters represent 1/3 intensity secondary color signals). Since each of the
sixteen palette registers is a 6-bit register with the bits representing rgbRGB (MSB through LSB respectively) only 16 of 64 colors
can be displayed on the screen at any one time.

1.11.1.1 Color Alpha Display

In Color mode, two Alpha modes are available: either (medium resolution) 40 characters by 25 rows or (high resolution) 80
characters by 25 rows. The display RAM requirement is 2K bytes and 4K bytes of display RAM for 40 and 80 column modes
respectively. The display regeneration buffer is from B8000h to BBFFFh for these modes and the display ROM bios supports up to 8
or 4 separate display pages for 40 and 80 column modes respectively.

The character set is formed by a RAM loadable character generator and for 200 line resolution systems, each of the 256 characters
is made up of a 8 by 8 pixel matrix.

When an Extended Color Display (PC-ECD) is being used in full 350 line resolution, the 40 and 80 column text modes are still
supported but the character generator is programmed differently and a 8 by 14 pixel matrix is used. The display RAM mapping and
regen buffer origin and size requirements are exactly the same as the 200 line display modes.

The starting address in the display RAM is programmed via the CRT (Cathode Ray Tube) Controller (CRTC). The starting address
is on an even address boundary and it addresses the first (leftmost) character position in the top row of the display. The CRTC
starting address register is a 16-bit register and it specifies the offset in two byte pairs from the display mode origin. This means for
each change of one in the CRTC starting address register, the next even address is selected in the display RAM as the current
regeneration buffer origin.

In order to display a single character, two bytes of display RAM are required, and for each pair of display RAM bytes, the even
address is for the character code and the odd address is for the attribute byte. Subsequent characters are displayed along the row
from left to right. When the end of a row is reached the next pair in the display RAM appears in the first character position of the next
row down. Appendix 8 gives the 256 character codes and their respective default character representations. Note that the ROM bios
for EGA mode supports reprogramming the character generator with user supplied character matrices.

The attribute byte allows a choice of either 16 foreground and 8 background colors per character, plus blinking, or a choice of 16
colors for both foreground and background without blinking. In CGA mode, the display border may be programmed for any one of
the 16 colors.

The attribute byte for each is as follows:

Bit (ATn) Definition

7 Intensity or Enable Blink (Background)
6 Red (Background)
5 Green (Background)
4 Blue (Background)
3 Intensity (Foreground) or Character Map A/B Select
2 Red (Foreground)

Bit (ATn) Definition

1 Green (Foreground)
0 Blue (Foreground)

Bit 7, the Intensity or Enable Blink Bit, changes function based the Mode Control Register. In EGA mode, Mode Control Register (I/O
address 03C0h, index 10), Bit 3 selects between Intensity or Blink in standard alphanumeric display modes. For CGA compatible
mode, Mode control Register (I/O address 03D8h) bit 5 selects between Intensity or Blink.

In EGA mode bit 3, the foreground intensity bit, can be used as an alternate character map select bit to obtain up to 512 displayable
characters for a given screen. The extended character map option is explained in section 1.11.3, IGA Extended Graphics Mode
Registers, in the section which deals with the Character Map Select Register which is contained in the sequencer logic.

Note that in EGA mode, the bit positions listing IRGB actually selects one of the 16 paletter registers and depending on the contents
of the selected palette register the (extended six-wire) color signals are produced accordingly. If the palette registers are left
unchanged from the initial values loaded at mode change the color selections will be given the sixteen standard colors listed in the
color table at the beginning of this section. The table below gives the palette register settings which produce the standard 16 color
palette.

Reg r g b R G B Color

0 0 0 0 0 0 0 Black
1 0 0 0 0 0 1 Blue
2 0 0 0 0 1 0 Green
3 0 0 0 0 1 1 Cyan
4 0 0 0 1 0 0 Red
5 0 0 0 1 0 1 Magenta
6 0 0 0 1 0 0 Brown
7 0 0 0 1 1 1 White (Grey1)
8 1 1 1 0 1 0 Grey (Grey2)
9 1 1 1 0 0 1 Light Blue
A 1 1 1 0 0 0 Light Green
B 1 1 1 0 1 1 Light Cyan
C 1 1 1 1 1 0 Light Red
D 1 1 1 1 0 1 Light Magenta
E 1 1 1 1 1 0 (Light) Yellow
F 1 1 1 1 1 1 Intense White

The small (lower case) letters represent the secondary colors at 1/3 intensity each and the big (upper case) letters represent the
primary colors at 2/3 intensity each.

1.11.1.2 Monochrome Alpha Display

When driving a Monochrome (PC-MD) Display, there is only one Alpha mode available, 80 characters by 25 rows with a resolution of
720 dots by 350 lines. The display RAM requirement is in 4K increments in display regeneration buffer area from B0000h to
B7FFFh. The display ROM bios supports up to 8 separate display pages. Buffer 0 is from B0000 to B0F9F, buffer 1 is from B1000 to
B1F9F with the remaining 6 buffers starting on even 1000h boundaries to B7000.

In EGA mode the character set is formed by a RAM loadable character generator and each of the 256 characters is made up of a 9
by 14 pixel matrix.

The CRTC Starting Address is programmed in the same way as when in color modes and the two byte character and attribute pairs
are arranged in the display RAM just as in the color modes. The attribute byte, however assumes different functions from the color
attributes since there are no IRGB signals sent to the monitor, but Video & Intensity are produced. The monochrome attribute byte is
as follows:

Function Bits 7 6 5 4 3 2 1 0

Blanked Bkg I/B 0 0 0 I 0 0 0
Underlined Bkg I/B 0 0 0 I 0 0 1
Normal Bkg I/B 0 0 0 I 1 1 1
Inverse Bkg I/B 1 1 1 I 0 0 0

Bit 7, the Background Intensity/Blink Enable (B/I) Bit, changes function based the Mode control register. In EGA mode, Mode Control
Register (I/O address 03C0h, index 10), Bit 3 selects between Intense background when inverted or Blinking. For MDA compatible

mode, Mode control Register (I/O address 03B8h) Bit 5 selects between Intensity or Blink Functions. The Hercules modes follow
the same scheme in text mode.

Bit 3 is the foreground intensity bit and controls the intensity when not in inverse video or blanked. It is also necessary to turn the
contrast down on the PC-MD display in order to observe the difference in video levels.

1.11.2.1 Colour Graphics Display

PC-CD (Standard Color Display) systems support 200 scan lines with a choice of two graphics resolutions, either 320 pixels per
scan line with four colors per pixel or 640 pixels per scan line with a two colors and these are termed 'CGA' compatible modes.
Additional sixteen color (EGA) modes are also available in the above two resolutions. In the CGA compatible modes, the
regeneration buffer for the 320x200 4-color mode and 640x200 2-color mode starts at B8000 and requires 16K bytes per display
page. The IGA ROM BIOS supports either 8 or 4 display buffer pages for the 320 or 640 resolution modes respectively.

For EGA 16 color modes, the regen buffer starts at A0000 and is divided into four 64K byte planes, one each for the Blue, Green,
Red and Intensity bits. Each plane may be individually read from or written to by the CPU, and two or more planes may be selected
by the CPU for writing simultaneously with the same data. Individual data bits can be either enabled or disabled during CPU writes
to the graphics memory. The section on registers (1.11.3 below) will explain the methods available for graphics control.

PC-ECD (Extended Color Display) systems support the 200 line resolution modes described above with an additional 16 or 64
color, 640x350 resolution mode. For the high resolution (350 line) mode the regen buffer starts at A0000 and requires 28K bytes per
display page. The IGA ROM BIOS supports 2 display pages for the 350 line mode. The 16 color selection is by way of four color
planes as described above. The 16 of 64 possible colors is achieved by reprogramming the palette registers introduced in the color
text description.

1.11.2.2 Low Resolution (320 x 200) Graphics

In Low Resolution Graphics Mode, the display memory for one scan line (320 pixels) consists of 80 bytes. Each pixel requires two
bits so that four pixels are specified by each byte. The leftmost pixel is contained in the two MS bits of the byte and the two bit pairs
for the remaining pixels follow on logically from left to right. The two bit field for each pixel specifies one of four colors and can be in
one of three palettes as follows:

Colour Palette 0 Palette 1 Palette 2

0 Background Background Background
1 Green Cyan Cyan
2 Red Magenta Red
3 Yellow White White

The display regeneration buffer for medium resolution graphics modes is mapped a split buffer configuration with the even scan
lines (0, 2, 4, ... 198) contained in the graphics memory space from B8000 to B9F3F and the odd scan lines (1, 3, 5, ... 199) in the
memory address range from BA000 to BBF3F. The memory map is as follows:

320 Pixels (2 Bits Per)

B8000 - Scan Line 0 (80 Bytes) - B804F
B8050 - Scan Line 2 - B809F
B80A0 - Scan Line 4 - B80EF

.

.

.

B9EF0 - Scan Line 198 - B9F3F

BA000 - Scan Line 1 - BA04F
BA050 - Scan Line 3 - BA09F
BA0A0 - Scan Line 5 - BA0EF

.

.

.

BBEF0 - Scan Line 198 - BBF3F

The mapping of a byte of graphics RAM in low resolution mode is as follows:

RAM Bit: 7 6 5 4 3 2 1 0

Pixel: 0 1 2 3

Pixel Bit: 1 0 1 0 1 0 1 0

1.11.2.3 Medium Resolution (640 x 200) Graphics Mode

In Medium Resolution Graphics Mode, the display memory for for one scan line consists of 80 bytes. Each pixel requires one bits so
that eight pixels are specified by each byte. The leftmost pixel is contained in the MS bit of the byte and the remaining pixels follow
from left to right. In high resolution mode the two colors are either black (pixel bit off) or pixel bit on with video in one of the 16 colors
as selected by a foreground palette register.

One byte of graphics RAM in medium resolution graphics is as follows:

RAM Bit: 7 6 5 4 3 2 1 0

Pixel: 0 1 2 3 4 5 6 7

The address mapping of the scan lines in display RAM for high resolution graphics is the split buffer configuration depicted for
medium resolution mode. - All (100) even scan lines from B8000 to B9F3F followed by all (100) odd scan lines from BA000 to
BBF3F.

1.11.2.4 High Resolution (640 x 350) Graphics Mode

In High Resolution Graphics Mode, the display memory required for each scan line is 80 bytes which is the same as the 640 pixel
scan lines of the medium resolution mode. The major difference is that there are 350 scan lines which are mapped into a
contiguous block of display memory starting at A0000 and extending to AFFFF. The IGA ROM BIOS supports two display pages by
reprogramming the CRTC starting address register. Page 0 is from A0000 to A6D5F and page 1 is from A8000 to AED5F.

In high resolution mode the display RAM mapping is very straight forward, the 350 display lines are in contiguous 80 byte blocks in
the regeneration buffer. The internal pixel to RAM bit mapping is the same as depicted above for medium resolution graphics mode.

This display graphics mapping applies for both EGA Monochrome (BIOS Mode 15) and for EGA High Resolution Color (BIOS mode
16) graphics. The Hercules 720 by 348 graphics mapping is not so straightforward and requires a graphics map which is
segmented into four pieces. This mapping scheme is covered in section 1.11.7 with the Hercules Mode control registers.

1.11.2.5 IGA BIOS Modes

The IGA BIOS sets up the hardware to support twelve different modes for the various displays available on the PC1640 range. The
following table gives the modes supported by the BIOS ROM. Mode numbers between 8 & 12 are dummy mode numbers for other
graphics adapters not supported by the IGA ROM BIOS.

BIOS Mode 0 1 2 3 4 5 6 7 13 14 15 16

Type Text Text Text Text Graph Graph Graph Text Graph Graph Graph Graph
Columns 40 40 80 80 320 320 640 80 320 640 640 640
Rows 25 25 25 25 200 200 200 25 200 200 350 350
Colour(s) 16 16 16 16 4 B/W 2 Mono 16 16 Mono 16/64
Char Cell Size 8x8 8x8 8x8 8x8 8x8 8x8 8x8 9x14 8x8 8x8 9x14 8x14
Regen Origin B8000 B8000 B8000 B8000 B8000 B8000 B8000 B0000 A0000 A0000 A0000 A0000
Regen Size 32768 32768 32768 32768 32768 32768 32768 32768 65536 65536 65536 65536
Page Size 2048 2048 4096 4096 16384 16384 16384 4096 8192 16384 32768 32768
Number Pages 16 16 8 8 2 2 2 8 8 4 2 2

The Regeneration Buffer Origin is stated in hexadecimal notation since it is an address quantity. All other values are in decimal
notation in order to give a numerical perspective to the quantitites.

The IGA ROM BIOS supports multiple display pages and can be called to select an alternate page. The default (base page) upon
initial mode selection is always zero and it begins at the origin address. The successive pages are located higher by the page size
increment in the table. The equation for page origin is: Page Origin = Regen Origin + (Page Number - Page Size). Since the 'Page
Size' quantity is a pure binary multiple it becomes a shift factor for the selected page number. Page are numbered from 0 to n-1
where 'n' is the number of pages available.

The maximum display pages for modes 0 and 1 is listed to be 16 for each. While this is true from a hardware point of view, the IGA
ROM BIOS only supports the first eight and the additional pages though accessible via direct access to the memory map, the video
character output routines in the ROM BIOS will not correctly access alternate page numbers 8 - 15.

1.11.3 IGA Control Registers

The control registers available in the IGA are somewhat complex but allow a versatile alphanumerics (text) and graphics display
environment. The PC1640 ROM Operating System (ROS) and the IGA ROM BIOS allow a simplified set of software interfaces to this
hardware and this should be the preferred method of implementing programs with some measure of transportablility to future
hardware which may not be compatible with this environment at the hardware level.

Special IGA Registers

There are three special registers which control the overall IGA operational mode and setup characteristics of these modes. The IGA
ROM BIOS and the DISPLAY utility program supplied with the PC1640 are the usual programs which sets up these registers. The
IGA does not auto-switch, that is, it will stay in a selected hardware emulation mode until some program such as the DISPLAY utility
manipulates the control registers. In addition applications programs with drivers for particular hardware will use these registers for
their control purposes. The Special IGA Registers are as follows:

Name Port Address

IGA Extended Mode Control 3DB/3BB
Hercules Control Register 3BF
Plantronics Control Register 3DD

Extended Mode Control Register

The IGA Extended Mode Control Register controls the overall operational mode of the IGA such that it can be in EGA, CGA, MDA,
Hercules or Plantronics emulation modes. The Extended mode control register is a write only 8-bit register located at I/O address
3DB/3BB and it can only be written to after two successive I/O reads of address 3D8/3B8. This is a protection feature which prevents
accidental modifications from taking place. In order to determine whether to use I/O addresses 3B8/3BB or 3D8/3DB (Mono or Color
addresses) it is necessary to know whether the system is configured in monochrome or color mode. The standard method for
doing this is to use the system ROS's CRTC I/O address pointer located at RAM address 00463. This word (16-bit) will contain
either 3B4 or 3D4 depending whether the system is in monochrome mode or color display mode respectively.

The format of the IGA Extended Mode Control register is as follows:

Bit Output Function

7 Vsync Polarity, Border Blanking.
6 Enable Special Modes.
5 Disable Palette and Overscan Registers.
4 Lock CRTC Timing Registers.
3 Enable Alternate Character Sets on plane 3.
2 Disable Blanking.
1 Enable 132 Character Mode.
0 Enable Color Simulation Modes.

Bit 7 when set forces negative polarity of vertical sync and also blanks the screen border.

Bit 6 when set enables the 6845 compatible modes, CGA, Monochrome, Hercules and Plantronics modes.

Bit 5 when set locks out the Palette registers and the Overscan register.

Bit 4 when set prevents modification of the CRT Controller registers which determine sync signal timing.

Bit 3 when set provides an additional character set option of four 8Kb character sets from plane 3. (See page 40 for additional
details.)

Bit 2 when set disables the screen blanking in the CGA Color Alpha mode.

Bit 1 when set enables the 132 Character Mode.

Bit 0 when set enables color simulation modes.

Hercules Mode Register

The Hercules Mode Register is active when Hercules Monochrome Graphics is enabled and is a write only register at I/O address
3BF. It controls the configuration of the graphics memory map and protects against accidental setting of the graphics mode bits in

the mode control port at 3B8. The layout of this register is as follows:

Bit Function

7 - 2 Not Used.
1 Enable Mode Reg Bit 7. (The Full/Half Graphics bit)
0 Enable Mode Reg Bit 1. (The Text/Graphics bit)

Since Hercules mode resembles MDA mode but with graphics extensions, applications software built for the MDA may inadvertently
set the Hercules graphics control bits. This register prevents such accidents by forcing the respective bits to zero so that text mode
is maintained and the display buffer remains at B0000.

Plantronics Mode Register

Plantronics mode is an additional color mode which allows CGA-like color but with extensions for four colors in 640x200 resolution
and 16 colors in 320x200 resolution through use of an additional color plane residing in the BC000 memory range. The Plantronics
Mode Register (PLR) is a write only register located at I/O address 3DD. Its format is as follows:

Bit Function

7 Not Used.
6 Color Plane 0/1 Position.
5 Enable Extended color palette 1
4 Enable Extended color palette 2
3 - 0 Not Used.

Bit 6 when clear enables color plane 0 to start at B8000 and color plane 1 to start at BC000. Setting bit 6 swaps the two plane's
starting addresses so that color plane 0 starts at BC000 and color plane 1 starts at B8000. Each color plane is 16K bytes in length.

The Extended color palettes enable combinations of bits set is planes 0 and 1 to select one of four different colors for 640 dot
resolution or one of 16 colors in 320 dot resolution modes.

When both bits 4 and 5 are cleared standard CGA mode is enabled. When both bits 4 and 5 are set together then bit 4 overrides bit
5 but it is recommended that either bit 4 or bit 5 be set individually else unusual effects may occur. Bit 6 has no effect unless one of
bit 4 or bit 5 is set.

EGA Mode Compatible Registers

There are sixty-five EGA Mode compatible registers which control the characteristics of the Extended Graphics Environment. These
registers are are grouped into five logical groups, EGC (External) Control, Attribute Controller, Sequencer, Graphics Controller, and
the CRTC Controller. They are listed in their respective groupings below:

Register Name Port R/W Index

EGC Control 3C2 WO -
EGC Status 3C2 RO -

Attribute Controller Address 3C0 WO -
Palette Registers (0-F) 3C0 WO 00-0F
Mode Control Register 3C0 WO 10
Extended Graphics Border 3C0 WO 11
Color Plane Enable 3C0 WO 12
Horizontal Panning 3C0 WO 13

Sequencer Address 3C4 WO -
Clock Mode 3C5 WO 01
Color Plane Write 3C5 WO 02
Character Set Select 3C5 WO 03
Memory Mode Select 3C5 WO 04

Graphics Controller Address 3CE WO -
Set/Reset 3CF WO 00
Enable Set/Reset 3CF WO 01
Color Plane Compare 3CF WO 02
Data Rotate 3CF WO 03
Color Plane Read 3CF WO 04

Register Name Port R/W Index

Graphics Mode Register 1 3CF WO 05
Graphics Mode Register 2 3CF WO 06
Color No Care 3CF WO 07
Write Mask 3CF WO 08

CRT Controller Address 3B4/3D4 WO -
Horizontal Total 3B5/3D5 WO 00
Horizontal Display End 3B5/3D5 WO 01
Start Horizontal Blanking 3B5/3D5 WO 02
End Horizontal Blanking 3B5/3D5 WO 03
Start Horizontal Retrace 3B5/3D5 WO 04
End Horizontal Retrace 3B5/3D5 WO 05
Vertical Total 3B5/3D5 WO 06
CRTC Overflow 3B5/3D5 WO 07
Preset Row Scan 3B5/3D5 WO 08
Maximum Scan line 3B5/3D5 WO 09
Cursor Start 3B5/3D5 WO 0A
Cursor End 3B5/3D5 WO 0B
Start Address High 3B5/3D5 R/W 0C
Start Address Low 3B5/3D5 R/W 0D
Cursor Address High 3B5/3D5 R/W 0E
Cursor Address Low 3B5/3D5 R/W 0F
Start Vertical Retrace 3B5/3D5 WO 10
Light Pen High 3B5/3D5 RO 10
End Vertical Retrace 3B5/3D5 WO 11
Light Pen Low 3B5/3D5 RO 11
Vertical Display Enable End 3B5/3D5 WO 12
Offset 3B5/3D5 WO 13
Underline Location 3B5/3D5 WO 14
Start Vertical Blanking 3B5/3D5 WO 15
End Vertical Blanking 3B5/3D5 WO 16
CRTC Mode Control 3B5/3D5 WO 17
Line Compare Register 3B5/3D5 WO 18
Status Port 3B5/3D5 RO -

The CRT Controller registers will either reside in the 3B- range for monochrome display mode or in the 3D- range for color display
modes. This variable address selection is by way of bit 0 in the EGC Control register at I/O address 3C2.

EGC External Control Registers

The EGC External Control registers comprise a group of two registers which enable reading of information such as switches and
enable a number of other hardware setup functions.

EGC Control Register (3C2 Out)

The EGC Control Register is a write only register which resides at I/O address 3C2. Its format is as follows.

Bit Function

7 VSYNC Polarity.
6 HSYNC Polarity.
5 Alternate (64K) Text page Select.
4 External Video Enable.
3-2 Clock Rate Select / Switch Sense Select.
1 Display RAM Enable.
0 CRTC 3BX/3DX I/O Address Select.

Bit 7 = '0' for positive VSYNC polarity, and bit 7 = '1' for negative VSYNC polarity.

Bit 6 = '0' for positive HSYNC polarity, and bit 6 = '1' for negative HSYNC polarity.

Bit 5 enables the selection of an alternate 64K display RAM for text modes (BIOS Modes 0 - 3 and 7). Bit 5 = '0' for the default (Low)
64K Text Page and bit 5 = '1' for the alternate (High) 64K Text Page select.

Bit 4 when set disables internal video and enables a data path for video from an external (Features) connector. However no such
connector is provided on the PC1640 main board IGA. Bit 4 should always be written as zero.

Bits 2 and 3 form a two-bit field which selects one of two clock rates. When both bits are zero (bit 3 = bit 2 = '0') then 14MHz clock is
used as the clock source and when bit 3 is zero and bit 2 is one (bit 3 = '0', bit 2 = '1') then 16MHz is used as the IGA clock source.
The other two combinations are not valid for the PC1640. In addition to selecting the clock rate Bits 2 and 3 form a two bit field for
reading the system board switches 1 - 4 and comprise a ones complement switch select field (See EGC Status - page 35).

Bit 1 = '0' disables CPU access to the display RAM and bit 1 = '1' enables CPU access to the display RAM.

Bit 0 maps the CRTC for Monochrome I/O addressing or Color I/O addressing. When bit 0 = '0' the CRTC resides at 3B4 & 3B5 for
monochrome mode and when bit 0 = '1' the CRTC resides at 3D4 & 3D5 for color mode. The Status Port register is also remapped
from I/O address 3BA in monochrome mode to I/O address 3DA in color mode.

EGC Status Register (3C2 In)

The EGC Status Register is a read only register which resides at I/O address 3C2. Its format is as follows.

Bit Function

7 VSYNC Interrupt Active.
6 - 5 Not Used.
4 Switch Sense.
3 - 0 Not Used.

Bit 7 = '1' when the VSYNC is waiting and bit 7 = '0' when VSYNC interrupt request has been cleared or is inactive.

Bit 4 works in conjunction with bits 2 and 3 of the EGC Control register to form a switch sense selector. When bit 4 = '0' the selected
switch (1 - 4) is closed. The following tables gives the switch select settings.

EGC Control Reg
Out (3C2)

EGC Status Reg
In(3C2)

Bit 3 2 Bit 4

1 1 -Switch 1
1 0 -Switch 2
0 1 -Switch 3
0 0 -Switch 4

The IGA ROM BIOS reads these switches during the Power On Self Test (POST) initialization phase and deposits the switch
complement value in the system storage location 0:488. Bits 0 - 3 correspond to the ones-complement of switches 1 - 4
respectively. The four MS bits of location 0:488 will always be ones on the PC1640.

Attribute Controller Registers

The Attribute Controller is a hardware grouping within the Extended graphics Controller which provides for color management. The
major components of this section of logic are the palette registers which allow for the selection of 16 of 64 colors at any one time.

Attribute Controller Address Register

The Attribute Controller Address Register is a write only register which at I/O address 3C0h. When written to, its contents represent
an index into the Attribute Controller register set which also resides at I/O address 3C0. The processor must first output the Index
value followed immediately by the register value to be written. Any divergence from this two byte output scheme will cause following
operations to confuse Index and data values.

Palette Registers (00h - 0Fh)

The sixteen Palette Registers reside at index positions 00h through 0Fh in the attribute controller and the bit assignments for each
is as follows:

Bit Function Video Pin

7 - 6 Not Used. -

Bit Function Video Pin

5 Secondary Red Video 2 (r)
4 Secondary Green/Intensity 6 (g/I)
3 Secondary Blue/Mono Video 7 (b/V)
2 Primary Red 3 (R)
1 Primary Green 4 (G)
0 Primary Blue 5 (B)

The Palette registers are each six bits wide and the bits are arranged such that the output color signals will correspond (from MS to
LS bits) in the order rgbRGB. The major point to note is that secondary green and Intensity are on the same video output pins. The
IGA ROM BIOS will initially load the palette registers such that the secondary green bit (bit 4) will be set for all the high order
registers which require Intensity set for the four wire IRGB 16 color displays. This scheme allows the color selection to resemble a
CGA's color selection. Any of the color fields which contain four bits (i.e. attribute bytes and color planes) actually select their
respective palette register for the selection of color signals are to be output.

Mode Control Register (10h)

The Mode Control Register is a write only register which resides at index 10h in the attribute controller at I/O address 3C0. This
register specifies the major operational mode and some other characteristics of selected modes. The Mode Control Register
format is as follows:

Bit Function

7 - 4 Not Used.
3 Background Intensity / Enable Blink.
2 Enable Line Graphics.
1 Display Type.
0 Graphics/AlphaNumeric (AN) Mode.

In Alphanumeric mode bit 3 ties up with the MS bit of the text attribute byte to enable MS attribute bit to either be the Blink Enable bit
when bit 3 is set or to enable the MS attribute bit to be that Background Intensity bit when bit 3 is reset. The blink rate is 16 display
frames ON and 16 display frames OFF which is half the cursor blink rate. In Color Graphics Mode, setting bit 3 allows for a specific
pixel to alternate between two colors by toggling COL3 at the blink rate.

Bit 2 when set enables the special line graphics characters originally designed for the MDA by causing the ninth dot to be the same
as the eight dot for an effective 9x14 character cell.

Bit 1 when set selects the monochrome display attributes and when clear selects color display attributes.

Bit 0 selects graphics mode when set and Alphanumeric mode when reset.

Extended Graphics Border Register (11h)

The Extended Graphics Border Register is located at index 11h in the attribute controller registers at I/O address 3C0. It is also
called the Overscan register and is a 6-bit wide write only register. Its function is to specify the Extended graphics mode border color.
It can be locked out by setting bit 5 in the IGA Extended Mode Control Register (See page 29).

The format of the Extended Graphics Border register is the same as the Palette Registers (see page 36). When in monochrome
mode the Extended Graphics Border register should be set to zero.

Color Plane Enable Register (12h)

The Color Plane Enable Register is a write only register residing at index 12h in the attribute controller at I/O address 3C0. Its
function is to enable or disable which color planes are active for producing video, thus acting as an overall palette selector. The
format is as follows:

Bit Function

7 - 6 Not Used.
5 - 4 Video Status Multiplex (MUX)
3 Enable Color Plane 3
2 Enable Color Plane 2
1 Enable Color Plane 1
0 Enable Color Plane 0.

When bits 0-3 are set to '1's, the corresponding color plane is enabled.

The two bits 4 and 5 allow for diagnostics to be run on the hardware by selecting which two color plane's outputs will be gated to
bits 4 and 5 of the Status Port Register at 3BA / 3DA. The Following table gives the correspondence between the video status MUX
bits and the Status Port.

Video Status MUX Status Port Reg

(3C0) (3XA)

Bits 5 4 Bits 5 4

0 0 R B
0 1 r g
1 0 b G

The upper case letters represent the primary colors and the lower case letters represent the secondary colors. The 1, 1 case is not
used.

Horizontal Panning Register (13h)

The Horizontal Panning Register is a write only register residing at index 13h in the attribute controller at I/O address 3C0. Its
function is to select the number of pixels to shift the video date horizontally left. Panning is available in both alphanumeric and
graphics modes. The monochrome alphanumeric shift factor is a maximum of 9 pixels. The maximum shift factor for all other
modes is 8 pixels. The bit layout of the Horizontal Panning Register is as follows:

Bit Function

7 - 4 Not Used.
3 - 0 Horizontal Panning Value. (Bits 3-0)

For the 9-bit maximum monochrome alphanumeric mode the shift sequence is pixel 8, then pixels 0 through 7. For all other modes
the pixel shift sequence is pixels 0 through 7.

Sequencer Registers

The Sequencer is a hardware grouping within the Extended graphics controller which controls video memory accessing, character
clocking and character generator mapping. The Sequencer registers consist of an address register with four control registers which
are indexed by the address register. Index position zero though listed to select the Reset register is not required in the PC1640 IGA
and is not implemented. The remaining registers corresponding to index values 1 through 4 respectively are the Clocking Mode
register, the Plane Mask register, the Character Set Select Register, and the Memory Mode register.

Sequencer Address Register

The Sequencer Address Register is a write only register at I/O address 3C4 which selects which sequencer register is configured
to I/O address 3C5. The bit layout of the Sequencer address register is as follows:

Bit Function

7 - 3 Not Used.
2 - 0 Sequencer Address (Bits 2 - 0)

Clock Mode Register (3C5, 1)

The Clock Mode Register is a write only register which resides at I/O address 3C5 when the index register contains 1. Its format is
as follows:

Bit Function

7 - 4 Not Used.
3 Dot Clock Rate.
2 Shift Register Load.
1 Not Used.
0 8/9 Dot Clocks.

Bit 3 controls whether the dot clock will be a direct function of the master clock rate or divided by two. Setting bit 3 causes the input
clock to be divided by two. This is used for 320 pixel wide graphics.

Bit 2 when cleared causes the serial video shift registers to be loaded every character clock. Setting bit 2 causes the load rate to be
every second character clock. Bit 2 should be cleared when two of the shift registers are chained together for 16-bit character
columns.

Bit 0 controls the number of dot clocks generated by character row. It should be cleared for monochrome mode (9-bit wide
characters) and set for color mode characters (8-bits wide).

Color Plane Select Register (3C5, 2)

The Color Plane Select Register is a write only register which resides at I/O address 3C5 when the index register contains 2. Its
format is as follows:

Bit Function

7 - 4 Not Used.
3 Write Enable Memory Plane 3.
2 Write Enable Memory Plane 2.
1 Write Enable Memory Plane 1.
0 Write Enable Memory Plane 0.

Setting Bits 0 - 3 write enables the respective memory plane. The CPU can write to any combination of display memory planes in
one write cycle by setting the respctive bits. Bits 0 &1 and bits 2 & 3 should have the same values when odd/even modes are
selected. (See page page 42 for Odd/Even mode details.)

Character Set Select Register (3C5, 3)

The Color Plane Select Register is a write only register which resides at I/O address 3C5 when the index register contains 3. Its
format is as follows:

Bit Function

7 - 4 Not Used.
3 - 2 Character Set Select A.
1 - 0 Character Set Select B.

There are four alternate character sets per character map each containing 128 characters each thus allowing up to 512 characters
to be accessible for any given screen. In addition the IGA Extended Mode register (bit 3) enables an alternate set of character maps
to be selected for an extended total of 1024 available characters. The alternate map character selections is disabled then character
map select A equals character map select B (that is, bits 0 & 1 equal bits 2 & 3. When enabled, attribute bit 3 selects when reset
selects character map A and when set selects character map B. The following table gives the character set selections for the
combinations of bits 0 - 3.

Character Set Selected Map vs

Sel A Sel B Attribute Bit 3

3 2 1 0 1 0

0 0 0 0 -- --
0 0 0 1 00 01
0 0 1 0 00 02
0 0 1 1 00 03
0 1 0 0 01 00
0 1 0 1 -- --
0 1 1 0 01 02
0 1 1 1 01 03
1 0 0 0 02 00
1 0 0 1 02 01
1 0 1 0 -- --
1 0 1 1 02 03
1 1 0 0 03 00
1 1 0 1 03 01
1 1 1 0 03 02
1 1 1 1 -- --

The dashes mean disabled and that attribute bit 3 becomes the intensity select bit.

When the IGA Extended Mode Register bit 3 is set then an alternate set of character maps are enabled from plane 3 and in this
case the map numbers in the table should be logically incremented by 4. The following figure illustrates the complete PC1640
character set organization.

Plane 2 Plane 3

8 Kb Char Set 0 Char set 4
8 Kb Not Used. Not Used.
8 Kb Char Set 1 Char set 5
8 Kb Not Used. Not Used.
8 Kb Char Set 2 Char set 6
8 Kb Not Used. Not Used.
8 Kb Char Set 3 Char set 7
8 Kb Not Used. Not Used.

Memory Mode Select Register (3C5, 4)

The Memory Mode Select Register is a write only register which resides at I/O address 3C5 when the index register contains 4. Its
format is as follows:

Bit Function

7 - 3 Not Used.
2 Odd/Even.
1 Extended Memory. (1)
0 Not Used.

Bit 1 indicates that 256Kb of display RAM is present and should always be set on the PC1640.

Bit 2 when set selects chained addressing mode whereby even CPU address access character sets 0 and 2 while odd CPU
addresses access character sets 1 and 3. When bit 1 is cleared, unchained addressing mode is selected and CPU accesses
sequentially access data within the character bit maps.

Graphics Controller Registers

The Graphics Controller is a hardware grouping within the Extended graphics Controller which directs memory data to the attribute
controller and to the CPU. In graphics modes serialised memory data is sent to the attribute controller. The Graphics Controller and
the Attribute Controller are the two logic groupings which make up a total functional logic grouping called the Video Controller. The
Graphics Controller registers consists of an address register and nine write only data registers.

Graphics Controller Address (3CE)

The Graphics Controller Address Register is a write only register at I/O address 3CE which serves as an address pointer for nine
data registers at I/O address 3CF. The bit layout is as follows:

Bit Function

7 - 4 Not Used.
3 - 0 Graphics Address Pointer.

Bits 0 - 3 select the active register at I/O address 3DF.

Set/Reset (3CF, 0)

The Set/Reset Register is a write only register which resides at I/O address 3CF when the Graphics Controller Address Register
contains 0. Its format is as follows:

Bit Function

7 - 4 Not Used.
3 Set/Reset Bit 3
2 Set/Reset Bit 2
1 Set/Reset Bit 1

Bit Function

0 Set/Reset Bit 0

The value in Bits 0 - 3 is written to plane 0 - 3 respectively, providing that the corresponding bit in the Enable Set/Reset register
(below) is also set and that Graphics Mode Register 1 is programmed for write mode 0 and that the CPU data bit being written
contains a 1.

For example if it were desired to write bits 7, 5 and 0 of a particular display location with light cyan then the Set/Reset register bits
3-0 would be set to 1011 binary (the pattern for light cyan), then the Enable Set/Reset register (page 44) is set to 0Fh and the
particular display memory location would be written with 1010001 binary. The bit positions containing zeroes would remain
unchanged and the pixels corresponding to bits 7, 5, and 0 would be light cyan. The equation for bit number to pixel number
translation is: Pixel Number = (7 - Bit Number).

Enable Set/Reset (3CF, 1)

The Enable Set/Reset Register is a write only register which resides at I/O address 3CF when the Graphics Controller Address
Register contains 1. Its format is as follows:

Bit Function

7 - 4 Not Used.
3 Enable Set/Reset Bit 3
2 Enable Set/Reset Bit 2
1 Enable Set/Reset Bit 1
0 Enable Set/Reset Bit 0

Setting Bits 0 - 3 will qualify the corresponding Set/Reset register bit to be written as described above. If write mode is 0 and
Set/Reset is not enabled on a color plane, the plane's original contents are preserved.

Color Plane Compare Register (3CF, 2)

The Color Plane Compare Register is a write only register which resides at I/O address 3CF when the Graphics Controller Address
Register contains 2. The Color Plane Compare register is activated when the Graphics Mode Register 1 (page 47) bit 3 is set
enabling compare mode. When color compare mode is active, CPU reads of the display RAM area will return the results of a
comparison between the Color Plane Compare Register and the color planes rather than the actual memory contents.

The Color Plane Compare Register is as follows:

Bit Function

7 - 4 Not Used.
3 Color Plane Compare 3.
2 Color Plane Compare 2.
1 Color Plane Compare 1.
0 Color Plane Compare 0.

The color pattern in bits 0 - 3 is compared with the memory location being read by the CPU. The bits returned represent which bits
actually match the color pattern. The Color No Care register (described below) specify which planes participate in the comparison.

In the example for writing light cyan using the Set/Reset register, loading the color compare register with 1011 binary and reading
the same display memory location would return the 1010001 binary value written. This is interpreted to mean that the pixels
corresponding to bits 7, 5 and 0 are light cyan and the other pixels are some other color(s). To determine what other colors are in
the same byte would require either performing a color compare scan of the 15 other color combinations or discreetly reading each
of the color planes and considering what color the four bits for each pixel actually represent.

Data Rotate Register (3CF, 3)

The Data Rotate Register is a write only register which resides at I/O address 3CF when the Graphics Controller Address Register
contains 3. This register controls a number of logical operations which can be performed when the CPU writes to the display RAM.
Its layout is as follows:

Bit Function

7 - 5 Not Used.
4 - 3 Function Select.

Bit Function

2 - 0 Rotate Count.

The Function select field (bits 3 & 4) select one of four functions which can be performed between the existing contents of a memory
plane and the new data being written. These operations are as follows:

Bit
4 3 Selected Function

0 0 Replace Existing Data.
0 1 Logical 'AND'.
1 0 Logical 'OR'.
1 1 Logical 'XOR'.

When bits 3 and 4 are both reset, data from the CPU replaces the existing data and no logical operation is performed.

When a logical operation is enabled, the planes which are write enabled (see Color Plane Enable register) will be read and the
specified logical operation performed between the existing contents and the data from the CPU and the resultant value stored in the
respective display memory plane.

Bits 0 - 3 control a Rotate Right function on CPU data being written to the display planes. When write mode zero is programmed in
the Graphics Mode register 1 (See Below), the contents of bits 0 - 3 represent the shift count which will be performed on the data
from the CPU. The rotate is end around, the LS bits are rotated to the MS bits and the resultant value is written to the selected
memory plane(s).

Color Plane Read (3CF, 4)

The Color Plane Read Register is a write only register which resides at I/O address 3CF when the Graphics Controller Address
Register contains 4. Its format is as follows:

Bit Function

7 - 2 Not Used.
1 - 0 Read Select.

The CPU reads from whichever of the four color planes in display RAM selected according to the Read Select field. If the original
contents of the color paletter registers are maintained then the selection relates to the IRGB color signals as follows:

Bit
1 0 Selected Color Plane

0 0 Blue. (Plane 0)
0 1 Green. (Plane 1)
1 0 Red. (Plane 2)
1 1 Intensity. (Plane 3)

Bit 2 is also connected with the read select decoding and should be maintained reset else no plane will be selected for reading.

Graphics Mode Register 1 (3CF, 5)

The Graphics Mode Register 1 is a write only register which resides at I/O address 3CF when the Graphics Controller Address
Register contains 5. Its format is as follows:

Bit Function

7 - 6 Not Used.
5 Shift Register Format.
4 Not Used.
3 Read Mode.
2 Not Used.
1 - 0 Write Mode

Bit 5 controls the configuration of the four serializer shift registers within the graphics controller. In the normal case when bit 5 is
reset, data from planes 0 - 3 are shifted out of shift registers 0 - 3 respectively going out MS bit first. When bit 5 is set to one then the
even numbered bits are shifted out of the even numbered shift registers and the odd numbered bits are shifted out of the odd shift
registers. This means that shift register 0 shifts bits 6, 4, 2 & 0 of Plane 0, followed by bits 6, 4, 2 & 0 of plane 1. Shift register 1

shifts bits 7, 5, 3 & 1 of Plane 0 followed by bits 7, 5, 3 & 1 of Plane 1. Shift registers 2 and 3 perform the same even/odd shifting
pattern for color planes 2 & 3 as described above.

Bit 3 when clear enables the Color Plane Read register to control the color plane selection of CPU reads. When bit 3 is set then the
Color Plane Compare register controls the CPU data read back (as described on page 44).

Bits 0 and 1 form a two bit Write Mode field which specifies the manner in which the IGA handles graphics data written to the
memory planes. The following table gives the valid options:

Bits
1 0 Selected Write Mode Description

0 0
CPU data written to planes 0 - 3 is controlled by Color Plane Write register, the Data Rotate Register, the Set/Reset Registers
as described in the register descriptions.

0 1 When a CPU write cycle is performed Planes 0 - 3 are written with data from the previous CPU read operation.

1 0
Planes 0 - 3 are written with 1's or 0's based on bits 0 - 3. For example, if the value of data bit 3 = 1 then plane 3 would be
written with FFh.

The 1,1 state is not legal and should not be used.

Graphics Mode Register 2 (3CF, 6)

The Graphics Mode Register 2 is a write only register which resides at I/O address 3CF when the Graphics Controller Address
Register contains 6. Its format is as follows:

Bit Function

7 - 4 Not Used.
3 - 2 Memory Mapping Mode.
1 Enable Odd/Even Chaining.
0 Not Used.

Bits 2 and 3 form a two bit field which specifies the regeneration buffer origin and size parameters as follows:

Bit
3 2 Origin Size

0 0 A000h 128K Bytes
0 1 A000h 64K Bytes
1 0 B000h 32K Bytes
1 1 B800h 32K Bytes

Setting bit 1 causes the processor address bit A0 control the selection of odd/even memory planes rather than contiguous odd/even
addresses. The usual function performed by address bit A0 is shifted to the high order address bit.

Color No Care Register (3CF, 7)

The Color No Care Register is a write only register which resides at I/O address 3CF when the Graphics Controller Address
Register contains 7. Its format is as follows:

Bit Function

7 - 4 Not Used.
3 Color Plane 3 No Care.
2 Color Plane 2 No Care.
1 Color Plane 1 No Care.
0 Color Plane 0 No Care.

This register ties up with the Color Compare register and can be considered a color compare mask in that setting bits in the 'No
Care' register inhibits the corresponding color plane from participating in the comparison process when a color compare read is
performed.

Write Mask Register (3CF, 7)

The Write Mask Register is a write only register which resides at I/O address 3CF when the Graphics Controller Address Register
contains 8. Its format is as follows:

Bit Function

7 - 0 Write Mask. (Bits 7 - 0)

Resetting bits in the Write Mask register disables the respective bits from being written to in the display planes. The Write Mask
register is programmed to all ones during display mode initialization so that the all eight bits are normally stored into display
memory.

The Write Mask register affects all data written by the CPU including the rotate and logical operations. The hardware performs a
read-before-write operation in order to preserve the protected bits.

EGA Mode CRT Controller Registers

The CRT Controller is a hardware grouping within the IGA which controls horizontal and vertical synchronization as well as cursor,
underline and blink timing. It also generates addressing for the display regeration buffer and dynamic RAM refresh controls.

The CRT Controller contains data 27 registers which are accessed through an index register which must be loaded prior to
accessing a particular CRTC data register. The CRTC data registers reside at either I/O address 3B5 or I/O address 3D5
depending on whether the IGA is operating in monochrome mode or color mode respectively.

This alternate I/O addressing scheme is so that an alternate adapter such as a MDA or a CGA can be fitted in the expansion slots
and there will be no I/O address conflicts with the other display adapter's CRTC. This means that the system can only support one
color adapter and one monochrome adapter at the same time. If the IGA is driving a monochrome monitor then a CGA can be fitted
in the expansion slots. Conversely, if the IGA is driving a color display then only a monochrome adapter can be fitted in the
expansion slots. In no case can an EGA be fitted in the expansion slots when the IGA is active because the other EGA will overlay
the IGA's ROM BIOS as well as the registers in the 3CX I/O address range. It is also possible to configure the IGA to overlay other
display adapter's display RAM.

An additional register, the Status PORT Register, is not technically part of the CRTC but is closely associated with it also explained
with this hardware grouping.

CRT Controller Address Register

The CRT Controller Address Register is a write only register which resides at either I/O address 3B4 or I/O address 3D4. When
written to, its contents represent an index into the CRTC data registers at I/O addres 3X5 (X=B for Monochrome and X=D for color).

Bit Function

7 - 5 Unused.
4 - 0 CRT Controller Address. (00h - 18h)

Values greater than 18h are not valid and should not be used.

Horizontal Total Register (3B5/3D5, 0)

The Horizontal Total Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address Register
contains 00h. Its format is as follows:

Bit Function

7 - 0 Horizontal Total Value. (-2)

The Horizontal Total Register specifies the number of characters (minus 2) in the horizontal scan interval inclusive of the retrace
period. This value is the basis of all horizontal (and vertical) timing.

Horizontal Display End Register (3B5/3D5, 0)

The Horizontal Display End Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address
Register contains 01h. Its format is as follows:

Bit Function

7 - 0 Horizontal Display End Value. (-1)

The Horizontal Display End value is the number of characters to be displayed per horizontal line. The actual number of characters
displayed per horizontal line is one less than the contents of this register.

Start Horizontal Blanking Register (3B5/3D5, 2)

The Start Horizontal Blanking Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address
Register contains 02h. It is formatted as follows:

Bit Function

7 - 0 Start Horizontal Blanking Value.

The Horizontal blanking signal becomes active when the horizontal character count is equal to the value in this register.

End Horizontal Blanking Register (3B5/3D5, 3)

The End Horizontal Blanking Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address
Register contains 03h. It is formatted as follows:

Bit Function

7 Unused.
6 - 5 Display Enable Skew Value.
4 - 0 End Horizontal Blanking Value.

The Horizontal blanking signal becomes inactive when the lower 5 bits of the horizontal character count is equal to the value stored
in bits 0 - 4 of this register.

Because of the sequential access to display memory by the CRTC, the video data is skewed relative to the horizontal timing. The
Display Enable Skew value corrects for this skew by causing a delay of a number of character clocks equal to the value stored in
bits 5 and 6.

The following equation specifies the value for bits 0 - 4: End Horizontal Blanking = (Start Blanking Value + Width of Blanking) Modulo
32.

Start Horizontal Retrace Register (3B5/3D5, 4)

The Start Horizontal Retrace Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address
Register contains 04h. Its format is as follows:

Bit Function

7 - 0 Start Horizontal Retrace Value.

The Horizontal retrace signal becomes active when the horizontal character count is equal to the value in this register.

End Horizontal Retrace Register (3B5/3D5, 5)

The End Horizontal Retrace Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address
Register contains 5. Its bit assignment is as follows:

Bit Function

7 Even/Odd Starting Address.
6 - 5 Horizontal Retrace Skew.
4 - 0 End Horizontal Retrace Value.

The Horizontal Retrace signal becomes inactive when the lower 5 bits of the horizontal character count is equal to the value stored
in bits 0 - 4 of this register.

Setting bit 7 specifies that the CRT memory address after a horizontal retrace be an odd memory address. Resetting bit 7 specifies
an even starting address. Generally this bit should be reset but it is useful in applications where horizontal pixel panning is
required.

The value bits 5 and 6 specify the horizontal retrace skew (0 - 3) in character clock counts. The horizontal retrace signal will be
delayed by this value. A number of internal timing signals are generated by the falling edge of horizontal retrace. To guarantee
proper latching, retrace is started before the end of display enable, and then skewed by several character clocks for correct screen
centering.

The following equation specifies the value for bits 0 - 4: End Horizontal Retrace = (Start Horizontal Retrace Value + Width of Retrace)

Modulo 32.

Vertical Total Register (3B5/3D5, 6)

The Vertical Total Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address Register
contains 06h. Its format is as follows:

Bit Function

7 - 0 Vertical Total Value. (-2)

The Vertical Total Register specifies the low 8 bits of a 9 bit value. The 9th bit is located in the CRTC Overflow register. The value in
this register represents the total number of scan lines per frame minus two.

CRTC Overflow Register (3B5/3D5, 7)

The CRTC Overflow Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address Register
contains 07h. It is formatted as follows:

Bit Function

7 - 5 Unused.
4 Line Compare Bit 8.
3 Start Vertical Blanking Bit 8.
2 Start Vertical Retrace Bit 8.
1 Vertical Display Enable End Bit 8.
0 Vertical Total Bit 8.

This register specifies the 9th bit of several other control registers and will be set for a value specifying a scan line greater than 255.

Preset Row Scan Register (3B5/3D5, 8)

The Preset Row Scan Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address Register
contains 08h. Its format is as follows:

Bit Function

7 - 5 Unused.
4 - 0 Row Scan Preset Value.

Bits 0 - 4 specify the value of the starting row scan count after a vertical retrace.

Maximum Scan Line Register (3B5/3D5, 9)

The Maximum Scan Line Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address
Register contains 09h. Its bit assignment is as follows:

Bit Function

7 - 5 Unused.
4 - 0 Maximum Scan Line. (-1)

The value programmed into bits 0 - 4 specifies the number of scan lines per character row minus one.

Each horizontal retrace increments the horizontal row scan counter. The horizontal row scan counter is cleared when it equals the
Maximum Scan Line Register.

Cursor Start Register (3B5/3D5, 0A)

The Cursor Start Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address Register
contains 0Ah. Its bit assignment is as follows:

Bit Function

7 - 6 Unused.
5 Cursor Off.

Bit Function

4 - 0 Row Scan Cursor Begins. (-1)

Setting bit 5 turns the cursor off and resetting bit 5 enables the cursor.

Bits 0 - 4 specifies the row scan number of a character line where a cursor is begin. Programming Cursor Start greater than Cursor
End disables the cursor.

Cursor End Register (3B5/3D5, 0B)

The Cursor End Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address Register
contains 0Bh. Its bit assignment is as follows:

Bit Function

7 Unused.
6 - 5 Cursor Skew Control.
4 - 0 Row Scan Cursor Ends. (+1)

The value stored in bits 0 - 4 represents the last line in each character for displaying the cursor plus one.

Bits 5 & 6 specify the number of character clocks to delay the cursor. For each clock count the cursor moves right by one position.

Programming Cursor Start and Cursor End may not always produce the expected results especially in instances where cursor end
is greater than max line scan.

Start Address High Register (3B5/3D5, 0C)

The Start Address High Register is a read/write register which resides at I/O address 3X5 when the CRT Controller Address
Register contains 0Ch. Its bit assignment is as follows:

Bit Function

7 - 0 Display Start Address. (High Order Bits)

The Start Address High and the Start Address Low registers form a 16 bit value stored which is added to the display origin
programmed by Graphics Mode Register 2 to form current display buffer starting address. In text modes the IGA ROM BIOS sets up
the CRTC such that the programmed display start address value specifies character/attribute byte pairs from the display origin
address for an effective two to one (word oriented) offset ratio. In graphics modes the value is a straight one to one byte to offset
ratio.

Start Address Low Register (3B5/3D5, 0D)

The Start Address Low Register is a read/write register which resides at I/O address 3X5 when the CRT Controller Address
Register contains 0Ch. Its bit assignment is as follows:

Bit Function

7 - 0 Display Start Address. (Low Order Bits)

This register specifies the 8 low order bits of the display start address value.

Cursor Location High Register (3B5/3D5, 0E)

The Cursor Location High Register is a read/write register which resides at I/O address 3X5 when the CRT Controller Address
Register contains 0Eh. Its format is as follows:

Bit Function

7 - 0 Cursor Location. (High Order Bits)

The cursor location is a 16 bit quantity similar to the start address register. The Cursor Location High register contains the 8 high
order bits of the cursor location.

Cursor Location Low Register (3B5/3D5, 0F)

The Cursor Location Low Register is a read/write register which resides at I/O address 3X5 when the CRT Controller Address
Register contains 0Fh. Its format is as follows:

Bit Function

7 - 0 Cursor Location. (Low Order Bits)

The Cursor Location Low register specifies the 8 low order bits of the cursor location.

Start Vertical Retrace Register (3B5/3D5, 10 Write)

The Start Vertical Retrace Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address
Register contains 0Fh. It is formatted as follows:

Bit Function

7 - 0 Vertical Retrace Position. (Lower 8 bits)

The Start Vertical Retrace register is a 9-bit register and the value stored specifies the position of the leading edge of the vertical
retrace signal in terms of scan lines. This register contains the 8 low order bits of the Vertical Retrace start value and the 9th bit is
located in the CRTC Overflow register.

End Vertical Retrace Register (3B5/3D5, 11 Write)

The End Vertical Retrace Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address
Register contains 0Fh. It is formatted as follows:

Bit Function

7 - 6 Unused.
5 Vertical Interrupt Enable.
4 Vertical Interrupt Clear.
3 - 0 End vertical Retrace Value.

The vertical retrace signal becomes inactive when the lower four bits of the horizontal scan count equal bits 0 - 3 of this register.

Bit 5 when set to 1 causes the IRQ pin to go to a tri-stated high-Z state and when it is zeroed the IGA generates IRQ2 when vertical
retrace goes active.

Bit 4 is reset to zero to clear the vertical retrace interrupt signal. The interrupt handler routine for the CRT Interrupt should set this bit
low then high in order to clear the interrupt.

The following equation specifies the value for bits 0 - 3: End Vertical Retrace = (Start Vertical Retrace Value + Width of retrace)
Modulo 16.

Light Pen High Register (3B5/3D5, 10 Read)

The Light Pen High Register is a read only register which resides at I/O address 3X5 when the CRT Controller Address Register
contains 10h. Its format is as follows:

Bit Function

7 - 0 Light Pen Address. (High Order Bits)

The Light Pen Address is a 16-bitvalue representing the value of the CRTC address register when the light pen was triggered. This
register returns the eight high order bits.

Cursor Location Low Register (3B5/3D5, 11 Read)

The Light Pen Low Register is a read only register which resides at I/O address 3X5 when the CRT Controller Address Register
contains 11h. Its format is as follows:

Bit Function

7 - 0 Light Pen Address. (High Order Bits)

An I/O read of this register returns the eight low order bits of the light pen address value.

Vertical Display End Register (3B5/3D5, 12)

The Vertical Display End Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address
Register contains 12h. Its format is as follows:

Bit Function

7 - 0 Vertical Display End Value. (-1) (8 Low Order Bits)

The vertical display end enable value is the represents the number of scan lines displayed minus one. This register contains the 8
low order bits of the vertical display end value and the 9th bit is located in the CRTC Overflow register.

CRTC Offset Register (3B5/3D5, 13)

The CRTC Offset Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address Register
contains 13h. Its format is as follows:

Bit Function

7 - 0 CRTC Offset Value.

The CRTC Offset value represents the logical line width of the display screen. The value in this register determines the starting
address of the next character row and is the number of character/attribute pairs in a display line.

Underline Location Register (3B5/3D5, 14)

The Underline Location Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address
Register contains 14h. Its format is as follows:

Bit Function

7 - 5 Unused.
4 - 0 Underline Location Value. (-1)

The value in bits 0 - 4 represents the horizontal row scan count at which the underline will occur. The specified value is one less
than the desired scan line number.

Start Vertical Blanking Register (3B5/3D5, 15)

The Start vertical Blanking Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address
Register contains 15h. Its format is as follows:

Bit Function

7 - 0 Start Vertical Blanking Value (8 Low Order Bits)

This register contains the 8 low order bits of the horizontal scan line count at which the vertical blanking signal becomes active. The
9th bit of this value is located in the CRTC Overflow register.

End Vertical Retrace Register (3B5/3D5, 16)

The End Vertical Blanking Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address
Register contains 16h. Its format is as follows:

Bit Function

7 - 5 Unused.
4 - 0 End Vertical Blanking Value.

The vertical blanking signal becomes inactive when the lower 5 bits of the horizontal scan count match bits 0 - 4 of this register.

The following equation specifies the value for bits 0 - 4: End Vertical Blanking = (Start Vertical Blanking Value + Width of Blanking)
Modulo 32.

CRTC Mode Register (3B5/3D5, 17)

The CRTC Mode Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address Register

contains 17h. Its is formatted as follows:

Bit Function

7 H/V Retrace Enable.
6 Word/Byte Mode.
5 64K Address Wrapping.
4 Not Used.
3 Memory Address Count Mode.
2 Horizontal Retrace Clock Select.
1 Row Scan Counter Select.
0 200 Line Compatibility Mode Select.

Bit 7 controls whether horizontal and vertical retrace is enabled or disabled. Resetting bit 7 to zero clears horizontal and vertical
retrace. Setting bit 7 to one enables H & V retrace signals.

Bit 6 when zero selects word mode and a one selects byte mode. This bit should set to zero in non EGA modes (IGA Extended Mode
register bit 6 = 1). In word mode the memory is addressed in two byte pairs and the MS bit of the address counter is tied to address
bit 0.

Bit 5 selects address wrap at 64K byte boundaries. Since 256K bytes of display memory are installed on the main board this bit
should be set to a one.

Bit 3 when set to one causes the memory address counter to be clocked by character clock input to be divided by two. When bit 3 is
zero the memory address counter is clocked by straight character clock input.

Bit 2 selects whether the vertical timing counter is to be clocked by horizontal retrace or by horizontal retrace divided by two. Setting
bit 2 selects the divide by two mode allowing double vertical resolution.

Bit 1 selects Row Scan counter output configuration. A zero selects row scan counter bit 1 on memory address output bit 14. A one
selects row scan counter bit 14 to memory address output bit 14.

Bit 0 allows CGA compatibility mode support by causing alternate display lines to be displaced by 8K bytes. When bit 0 is zero
compatibility mode is selected and row scan bit 0 is connected to memory address bit 13 during active display time. When bit 0 is
one memory address bit 13 is connected address counter bit 13.

Line Compare Register (3B5/3D5, 18)

The Line Compare Register is a write only register which resides at I/O address 3X5 when the CRT Controller Address Register
contains 18h. Its format is as follows:

Bit Function

7 - 0 Line Compare Value. (8 Low Order Bits)

This register contains the lower eight bits of the line compare target value and the 9th bit is in the CRTC Overflow register. The line
compare target value is used to implement a split screen function whereby some areas of the screeen can be made immune to
scrolling. When the vertical scan counter equals the line compare target value the memory address generator is cleared to zero.
Each subsequent row address is determined by the 16-bit addition of the Start of line latch and the contents of the Offset register.

Status PORT Register (3BA / 3DA)

The Status Port Register resides at either I/O address 3BA or I/O address 3DA depending on the CRTC Mono/Color (bit 0) setting in
the IGA External Control Register. Its format is as follows:

Bit Function

7 Not Used (Color) / -VSYNC (Mono).
6 EGA Mode.
5 - 4 Color Diagnostic. (MUX)
3 -VSYNC (Color) / Mono Video.
2 Light Pen Switch. (-LPSW)
1 Light Pen Strobe.
0 Display Enable.

Bit 7 is always a one in EGA emulation mode (IGA Extended Mode Reg bit 6 = 0) or when mapped into color adapter range (3DA).

In MDA emulation mode (at 3BA) bit 7 = 0 when VSYNC is active and bit 7 = 1 when VSYNC is inactive.

Bit 6 is a one in EGA emulation mode and a zero otherwise.

Bit 4 and 5 are used by diagnostic software for testing the color output signals and are used in conjunction with the Video Status
MUX in the Color Plane Enable Register. Refer to page 38 for the Video Status MUX details. The following is a repeat of the Video
Mux Table.

Video Status MUX Status Port Reg

(3C0) (3XA)

5 4 5 4

0 0 R B
0 1 r g
1 0 b G

The primary colors are represented the by capital (RGB) letters and the secondary colors are represented by the small (rgb) letters.

Bit 3 in EGA or Color Mode (3DA) is zero when VSYNC is active and one when VSYNC is inactive. In MDA mode (3BA) is zero when
Mono Video is active and one when Mono Video is inactive.

Bit 2 = 0 when the Light Pen switch is closed and bit 2 = 1 when the Light Pen switch is open.

Bit 1 = 0 when the Light Pen strobe has not been triggered and bit 1 = 1 when the Light Pen strobe has been triggered.

Bit 0 = 0 when the Video signal is enabled and bit 0 = 1 when either the vertical or horizontal retrace signals are active. This is a real
time indication of the raster scan line status.

1.11.4 IGA BIOS EGA Mode Initialization

The IGA ROM BIOS contains initialization tables for the EGA Mode compatible registers. The IGA BIOS modes were introduced in
1.11.2.5 and consist of a standard set of hardware setups which the BIOS ROM supports. Obviously other hardware setup
configurations could be conceived of by the well informed software engineer. However the ROM BIOS modes are the subset of
usable capabilities which will ensure transportability to other compatible hardware. The BIOS setups are as follows:

BIOS Mode 0 1 2 3 4 5 6 7 13 14 15 16

EGC Ctl (3C2) 23 23 23 23 23 23 23 A6 23 23 A2 A7
Attribute (0) 00 00 00 00 00 00 00 00 00 00 00 00
Controller (1) 01 01 01 01 13 13 17 08 01 01 08 01
Registers (2) 02 02 02 02 15 15 17 08 02 02 00 02
(3C0) (3) 03 03 03 03 17 17 17 08 03 03 00 03

(4) 04 04 04 04 02 02 17 08 04 04 18 04
(5) 05 05 05 05 04 04 17 08 05 05 18 05
(6) 06 06 06 06 06 06 17 08 06 06 00 14
(7) 07 07 07 07 07 07 17 08 07 07 00 07
(8) 10 10 10 10 10 10 17 10 10 10 00 38
(9) 11 11 11 11 11 11 17 18 11 11 08 39
(0A) 12 12 12 12 12 12 17 18 12 12 00 3A
(0B) 13 13 13 13 13 13 17 18 13 13 00 3B
(0C) 14 14 14 14 14 14 17 18 14 14 00 3C
(0D) 15 15 15 15 15 15 17 18 15 15 18 3D
(0E) 16 16 16 16 16 16 17 18 16 16 00 3E
(0F) 17 17 17 17 17 17 17 18 17 17 00 3F
(10) 08 08 08 08 01 01 01 0E 01 01 0B 01
(11) 00 00 00 00 00 00 00 00 00 00 00 00
(12) 0F 0F 0F 0F 03 03 01 0F 0F 0F 05 0F
(13) 00 00 00 00 00 00 00 08 00 00 00 00

Sequencer (1) 0B 0B 01 01 0B 0B 01 00 0B 01 01 01
Registers (2) 03 03 03 03 03 03 01 03 0F 0F 0F 0F
(3C5) (3) 00 00 00 00 00 00 00 00 00 00 00 00

(4) 03 03 03 03 02 02 06 03 06 06 06 06

Grapics (0) 00 00 00 00 00 00 00 00 00 00 00 00

BIOS Mode 0 1 2 3 4 5 6 7 13 14 15 16

Controller (1) 00 00 00 00 00 00 00 00 00 00 00 00
Registers (2) 00 00 00 00 00 00 00 00 00 00 00 00
(3CF) (3) 00 00 00 00 00 00 00 00 00 00 00 00

(4) 00 00 00 00 00 00 00 00 00 00 00 00
(5) 10 10 10 10 30 30 00 10 00 00 00 00
(6) 0E 0E 0E 0E 0F 0F 0D 0A 05 05 05 05
(7) 00 00 00 00 00 00 00 00 0F 0F 0F 0F
(8) FF FF FF FF FF FF FF FF FF FF FF FF

CRTC (0) 37 37 70 70 37 37 70 60 37 70 60 5B
Registers (1) 27 27 4F 4F 27 27 4F 4F 27 4F 4F 4F
(3B5/3D5) (2) 2D 2D 5C 5C 2D 2D 59 56 2D 59 56 53

(3) 37 37 2F 2F 37 37 2D 3A 37 2D 3A 37
(4) 31 31 5F 5F 30 30 5E 51 30 5E 50 52
(5) 15 15 07 07 14 14 06 60 14 06 60 00
(6) 04 04 04 04 04 04 04 70 04 04 70 6C
(7) 11 11 11 11 11 11 11 11 11 11 1F 1F
(8) 00 00 00 00 00 00 00 00 00 00 00 00
(9) 07 07 07 07 01 01 01 0D 00 00 00 00
(0A) 06 06 06 06 00 00 00 0B 00 00 00 00
(0B) 07 07 07 07 00 00 00 0C 00 00 00 00
(0C) 00 00 00 00 00 00 00 00 00 00 00 00
(0D) 00 00 00 00 00 00 00 00 00 00 00 00
(0E) 00 00 00 00 00 00 00 00 00 00 00 00
(0F) 00 00 00 00 00 00 00 00 00 00 00 00
(10) E1 E1 E1 E1 E1 E1 E0 5E E1 E0 5E 5E
(11) 24 24 24 24 24 24 23 2E 24 23 2E 2B
(12) C7 C7 C7 C7 C7 C7 C7 5D C7 C7 5D 5D
(13) 14 14 28 28 14 14 28 28 14 28 28 28
(14) 08 08 08 08 00 00 00 0D 00 00 0D 0F
(15) E0 E0 E0 E0 E0 E0 DF 5E E0 DF 5E 5F
(16) F0 F0 F0 F0 F0 F0 EF 6E F0 EF 6E 0A
(17) A3 A3 A3 A3 A2 A2 C2 A3 E3 E3 E3 E3
(18) FF FF FF FF FF FF FF FF FF FF FF FF

1.11.5 Color Graphics Adpater Compatible Registers.

When the PC1640 IGA is in 6845 compatible mode and attached to a PC-CD display (or to a PC-ECD display) it supports the older
style 200-line mode text and graphics. Its CRT controller and memory mapping are are different from the EGA environment in a
number of important ways and the software support environment is different in that the system ROS ROM supports the video
interrupt 16 calls. The IGA ROM BIOS initializes the IGA for the CGA mode emulation and then sets the video int 16 vectors so that
the standard ROS calls will be used for CGA mode support.

In CGA emulation mode there are two programmable registers for CGA mode and color selection. These consist of the CGA Mode
Control Register and the CGA Color Select Register.

1.11.5.1 CGA Control Register

The CGA Mode Control Register is a write only register located at I/O address 3D8h. It is used to control the state of the video
circuitry, selecting Alpha or Graphics mode and the various sub options available within Alpha and Graphics modes.

The layout of the CGA Mode control register is as follows:

Bit Output Use

7 No effect
6 No effect
5 Enable Blinking Chars (disable intensified backgrounds)
4 Select Graphics Mode 2 (de-select graphics mode 1)
3 Enable Video Display

Bit Output Use

2 Select Palette 2 (de-select palettes 0,1)
1 Select Graphics modes (de-select Alpha modes)
0 Select Alpha 80 Char mode (de-select 40 Char mode)

When bit 5 is set in Alpha modes, the foreground will blink for all displayed characters with attribute bit 7 also set. Bit 5 has no effect
in Graphics modes.

Bit 4 (Select Graphics Mode 2) has no effect in Alpha modes.

Clearing bit 3 causes the display to be blanked if bit 2 in the IGA Extended Mode Control register is cleared. The standard CGA
emulation mode initialization process sets bit 2 of the IGA Extended Mode control register so that blanking is disabled. The DISPLAY
program has a command line parameter, CGAB, which allows the standard blanking function to be enabled.

The Select Palette 2 bit (bit 2) has no effect in Alpha modes or in Graphics mode 2. It is used in conjunction with bit 5 of the CGA
colour select register to control graphics mode 1 palette. To select palette 2, bit 5 of the CGA colour select register (below) should
be reset and bit 2 of theGA mode control register should then be set.

Bit 0 (Select Alpha 80 Char mode) has no effect in Graphics modes.

To avoid unsightly effects on the screen, this register should be updated during frame flyback time. Any kind of mode changing
should preferably be done with video disabled. Mode changing involves the use of bits 1 and 0 and usually some re-programming
of the CRTC.

1.11.5.2 CGA Color Select Register

The CGA Color Select Register is a write only register located at I/O address 03D9h and is used for controlling border colour in
alpha modes and for selecting palette, border and pixel colour options in the graphics modes. The layout of the CGA Colour select
register is as follows:

Bit Alpha Modes Graphics Mode 1 Graphics Mode 2

7,6 No Effect No Effect No effect
5 No Effect Select Palette 1 (Deselect palette 0) No effect
4 No Effect Foreground Intensity for palettes 0, 1 & 2 No effect
3 Intensity (Border) Intensity (Backgnd and Border) Intensity (Pixel)
2 Red (Border) Red (Background and Border) Red (Pixel)
1 Green (Border) Green (Background and Border) Green (Pixel)
0 Blue (Border) Blue (Background and Border) Blue (Pixel)

In 640 x 200 two-color graphics mode the overall screen palette is controlled by setting the CGA Color Select register (which is
initialized to 07h by the ROS on selection of mode 6). This means that the colour resolution is really one of 16 colours for foreground
on a black background. Most applications software however control 640 x 200 mode graphics as black and white graphics.

To avoid unsightly effects on the screen this register should only be updated during frame flyback time.

1.11.5.3 CGA Status Register

The CGA Status Register is a read only register located at I/O address 03DA. It may be read at any time to determine the following:

Bit Input Use

7 - 4 Not used.
3 Frame Flyback (VSYNC) Time.
2 Light-pen switch open.
1 Light-pen latch set.
0 Display Enabled.

Frame flyback time starts at the same time as the bottom border and lasts for 46 horizontal scan periods, ending 16 scans before
the end of the subsequent top border.

Bit 2 reflects the state of the light-pen push button switch. Bit 2 = 0 when the light-pen switch is closed and bit 2 = 1 when the light-
pen switch is open.

When bit 1 is set, it indicates that the light pen latch is set, triggered either by a pulse from the light pen or by writing data to set the

light pen channel. Writing any data to the Clear Light Pen channel clears the latch.

Bit 0 = zero when the Video signal is enabled and bit 0 = "1" when either the vertical or horizontal retrace signals are active. This is a
real time indication of the raster scan line status.

1.11.5.4 CGA Mode 6845 CRTC emulation.

The CRT Controller is an emulation of a MC6845 CRT Controller device. All 6845 registers are programmable in the AMSTRAD
PC1640 and function the same as the actual device.

The registers must be programmed according to the CGA mode of operation required in conjunction with the CGA Mode and Color
Select Registers previously described. A mode changing operation should be performed in the following sequence: Disable video,
reprogram the CRTC as required, reprogram the Mode and Color select registers as required, (maintaining video disabled),
initialize display ram as required, enable video.

The 6845 CRTC is controlled by way of two I/O addresses, the CRTC Address register and the CRTC Data I/O location. The CRTC
Address register is a write only register located at I/O address 3D4 and the lower 5 bits are used select the data register at I/O
address 3D5. Addresses greater than 17 (11h) produce no results.

The CRTC registers are initialized as follows:

Register
Number
(Hex)

Register Name
Alpha 40
Char Mode
(Decimal)

Alpha 80
Char Mode
(Decimal)

Graphics
Modes
(Decimal)

R/W
Type

00 Horizontal Total (-1) 56 113 56 WO
01 Horizontal Displayed 40 80 40 WO
02 Horiz. Sync Position 45 90 45 WO
03 Horiz. Sync Width 10 10 10 WO
04 Vertical Total 31 31 127 WO
05 Vertical Total Adjust 6 6 6 WO
06 Vertical Displayed 25 25 100 WO
07 Vertical Sync Position 28 28 112 WO
08 Interlace 2 2 2 WO
09 Max. Scan Address 7 7 1 WO
0A Cursor Start 6 6 6 WO
0B Cursor End 7 7 7 WO
0C Start Address High 0 0 0 WO
0D Start Address Low 0 0 0 WO
0E Cursor Location High 0 0 0 RW
0F Cursor Location Low 0 0 0 RW
10 Light Pen Posn. High - - - RO
11 Light Pen Posn. Low - - - RO

Values greater than 31 in register 0Ah turn the cursor off. This is because bit 5 is the cursor off bit. Bit 6 in register 0Ah selects
alternate blink rate.

CRTC Display Addressing

In Alpha modes, the CRTC register values for start address and light pen position are in the 8K range 0000h to 1FFFh. The register
value corresponding to a character position in display RAM must be derived from the even byte address in the 16K range B8000h to
BBFFFh by subtracting B8000h and halving.

In Graphics modes, the CRTC register values for start address and light pen position are in the 4K range 0000h to 0FFFh, and
wraparound occurs above this range. A register value corresponds to two pairs of pixel bytes in display RAM on word boundaries,
one pair displayed on an even scan and the other pair displayed on the following odd scan in the same horizontal position.

The register corresponding to the pixel byte pair position in display RAM must be derived from the even byte address in the 8K range
B8000h to B9FFFh (for an even scan) by subtracting the address offset B8000h and halving. Similarly for the odd scan line the offset
BA000h is subtracted from an even byte address in the range BA000h to BBFFFh and halved.

1.11.6 Monochrome Display Adapter Compatible Registers.

When the PC1640 IGA is in 6845 compatible mode and attached to a PC-MD display it supports the monochrome mode text. Its
CRT controller and memory mapping are are different from the EGA environment in a number of ways and the software support
environment is different in that the system ROS ROM supports the older VIDEO Int 16 calls. The IGA ROM BIOS initializes the IGA for
the MDA mode emulation and then sets the video int 16 vectors so that the standard ROS calls will be used for MDA mode support.

1.11.6.1 MDA Mode Control Register

The MDA Mode Control Register is a write only register located at I/O address 3B8h. It is used to control the state of the video
circuitry.

The format of the MDA Mode control register is as follows:

Bit Output Use

7 No effect
6 No effect
5 Enable Blinking Chars (disable intensified background)
4 No effect
3 Enable Video Display
2 No effect
1 No effect
0 No effect

When bit 5 is set in the foreground will blink for all displayed characters with the blink (7) bit set in their attribute bytes.

Bit 3 must be set in order to enable the video output and when bit 3 is zero the display is blanked.

1.11.6.2 MDA Status Register

The MDA Status Register is a read only register located at I/O address 03BA. It may be read at any time to determine the following:

Bit Input Use

7 - 4 Not used (0).
3 Video.
2 - 1 Not used (0).
0 Display Enabled.

Bit 0 = zero when the Video signal is enabled and bit 0 = one when either the vertical or horizontal retrace is active.

Bit 3 = one when the mono video output pin (7) is active. This is a real time status of the raster scan line output.

1.11.6.3 6845 CRTC Emulation.

The CRT Controller is an emulation of a MC6845 CRT Controller device. All MC6845 are programmable in the AMSTRAD PC1640
and function the same as the actual device.

The CRTC is controlled by way of two I/O addresses, the CRTC Address register and the CRTC Data I/O location. The CRTC
Address register is a write only register located at I/O address 3B0 and the lower 5 bits are used select the data register at I/O
address 3B1. Addresses greater than 17 (11h) produce no results.

The CRTC registers names and initial values are as follows:

Register
Number
(Hex)

Register Name
Initial
Value
(Decimal)

R/W
Type
Type

00 Horizontal Total (-1) 97 WO
01 Horizontal Displayed 80 WO
02 Horiz. Sync Position 82 WO
03 Horiz. Sync Width 15 WO
04 Vertical Total (-1) 25 WO
05 Vertical Total Adjust 6 WO
06 Vertical Displayed 25 WO
07 Vertical Sync Position 25 WO

Register
Number
(Hex)

Register Name
Initial
Value
(Decimal)

R/W
Type
Type

08 Interlace 2 WO
09 Maximum Scan 13 WO
0A Cursor Start 11 WO
0B Cursor End 12 WO
0C Start Address High 0 WO
0D Start Address Low 0 WO
0E Cursor Location High 0 RW
0F Cursor Location Low 0 RW
10 Light Pen Address High - RO
11 Light Pen Address Low - RO

Setting bit 5 in register 0Ah turns the cursor off. Bit 6 in 0Ah selects alternate blink rate.

1.11.7 Hercules Compatible Emulation.

For the most part, the Hercules Monochrome (HMGA) emulation mode resembles the MDA emulation in text modes and the
control/status register bits have the same meanings. There are, however extra functions available in the HMGA emulation which
must be considered.

1.11.7.1 HMGA Mode Control Register

The HMGA Mode Control Register is a write only register located at I/O address 3B8h. It is used to control the state of the video
circuitry.

The format of the MDA Mode control register is as follows:

Bit Output Use

7 Display Page Select.
6 No effect.
5 Enable Blinking Chars (disable intensified background)
4 No effect.
3 Enable Video.
2 No effect.
1 Text/Graphics Mode Select.
0 No effect.

Bit 7 = '0' selects display page 0 (B0000-B7FFF), which is the Power-Up default state. Bit 7 = '1' selects display page 1 (B8000 -
BFFFF). Note that this will overlay an alternate color mode (CGA) adapter's display buffer which ranges from B8000 to BBFFF. This
bit is disabled from being set to '1' by the Hercules Mode register (bit 1) at I/O address 3BFh. See page 30.

When bit 5 is set in the foreground will blink for all displayed characters with the blink (7) bit set in their attribute bytes.

Bit 3 must be set in order to enable the video output and when bit 3 is zero the display is blanked.

Bit 1 = '0' selects text mode, which is the Power-Up default state. Bit 1 = '1' selects graphics mode. This bit is disabled from being
set to '1' by the Hercules Mode register (bit 0) at I/O address 3BFh. See page 30.

In Text mode display buffer spans from B8000 to B0FFF and the PC1640 ROS supports 4 display pages in 4K increments from the
origin. See 1.11.2.5 - BIOS Mode 7. The character/attribute pairs are as described under Monochrome Text description.

In Graphics Mode there two 32K display pages as controlled by bit 7 above. The byte/pixel mapping is segmeted into four groups of
scan lines in the display buffer with a x and y range of 0 to 719 and 0 to 347 respectively. The following 'C' language program
illustrates the display mapping.

/*--------------------------* HERCMAP.C *------------------------------------*/

#include <stdio.h>

int HGR_Offset(x,y)
int x,y;

{
return (0x2000 * (y % 4)) + (90 * (y/4)) + (x/8);

}

main()
{

int x,y;

for (x = y = 0; y < 10; y++)
printf(1x=%d, y=%3d: Offset = %4xh\r\n1,x,y,HGR_Offset(x,y));

for (y = 338; y < 348; y++)
printf(1x=%d, y=%3d: Offset = %4xh\r\n1,x,y,HGR_Offset(x,y));

}
/*--------------------------* HERCMAP.C *------------------------------------*/

And this program produces the following output:

x = 0, y = 0: Offset = 0000h
x = 0, y = 1: Offset = 2000h
x = 0, y = 2: Offset = 4000h
x = 0, y = 3: Offset = 6000h
x = 0, y = 4: Offset = 005Ah
x = 0, y = 5: Offset = 205Ah
x = 0, y = 6: Offset = 405Ah
x = 0, y = 7: Offset = 605Ah
x = 0, y = 8: Offset = 00B4h
x = 0, y = 9: Offset = 20B4h
x = 0, y = 338: Offset = 5D88h
x = 0, y = 339: Offset = 7D88h
x = 0, y = 340: Offset = 1DE2h
x = 0, y = 341: Offset = 3DE2h
x = 0, y = 342: Offset = 5DE2h
x = 0, y = 343: Offset = 7DE2h
x = 0, y = 344: Offset = 1E3Ch
x = 0, y = 345: Offset = 3E3Ch
x = 0, y = 346: Offset = 5E3Ch
x = 0, y = 347: Offset = 7E3Ch

This output illustrates the first 10 display lines and the last 10 display lines in the display buffer. Each 720 pixel display line
occupies 90 (5Ah) bytes. And every fourth line starts at the next contiguous 90th byte position. The four groupings are separated by
2000h in the buffer (as the first four output lines (0-3) illustrate. The final line in each grouping ends at a byte offset of 1E95h from its
group origin. The (016Ah byte) void space after each line is not used.

Note the '+ (x/8)' term in the equation for HGR Offset. It represents the fact that there are eight pixels per byte and they're numbered
from 0 to 7 which is inverse to the bit numbering. The equation for the pixel's bit number within a byte would then be: Bit Number = (7
- (x Mod 8))

1.11.7.2 HMGA Status Register

The HMGA Status Register is a read only register located at I/O address 03BA. It may be read at any time to determine the following:

Bit Input Use

7 -Vertical SYNC.
6 - 4 Not used (0).
3 -Mono Video.
2 - 1 Not used (0).
0 Display Enabled.

Bit 7 = '0' indicates that the vertical SYNC signal is active and the display is blanked. Bit 7 = '1' indicates that the display is active. It is
a good idea to wait until bit 7 is clear before updating the screen.

Bit 3 = '0' when the mono video output pin (7) is active. This is a real time status of the raster scan line output.

Bit 0 = '0' when the Video signal is enabled and bit 0 = '1' when either the vertical or horizontal retrace signals are active (and the
display is blanked).

1.11.7.3 6845 CRTC Emulation.

The CRT Controller is an emulation of a MC6845 CRT Controller device. All MC6845 are programmable in the AMSTRAD PC1640
and function the same as the actual device.

The CRTC is controlled by way of two I/O addresses, the CRTC Address register and the CRTC Data I/O location. The CRTC
Address register is a write only register located at I/O address 3B0 and the lower 5 bits are used select the data register at I/O
address 3B1. Addresses greater than 17 (11h) produce no results.

The CRTC registers names and initial values are as follows:

Register
Number
(Hex)

Register Name
Alpha (80)
Char Mode
(Decimal)

Graphics
Mode
(Decimal)

R/W
Type

00 Horizontal Total (-1) 97 53 WO
01 Horizontal Displayed 80 45 WO
02 Horiz. Sync Position 82 46 WO
03 Horiz. Sync Width 15 7 WO
04 Vertical Total (-1) 25 91 WO
05 Vertical Total Adjust 6 2 WO
06 Vertical Displayed 25 87 WO
07 Vertical Sync Position 25 87 WO
08 Interlace 2 2 WO
09 Maximum Scan 13 3 WO
0A Cursor Start 11 0 WO
0B Cursor End 12 0 WO
0C Start Address High 0 0 WO
0D Start Address Low 0 0 WO
0E Cursor Location High 0 0 RW
0F Cursor Location Low 0 0 RW
10 Light Pen Position High - - RO
11 Light Pen Position Low - - RO

In text mode, setting bit 5 in register 0Ah turns the cursor off. Bit 6 in 0Ah selects alternate blink rate.

The PC1640 ROS ROM only supports text mode (7) and contains no setup tables for HMGA graphics. The values given are therefore
a typical setup and represent a setup for graphics page zero. Consult the MC6845 CRTC data sheets for additional device details to
derive alternate setups.

1.12 Floppy Disk Controller

The floppy disk controller is based on the NEC uPD765A single chip controller, and supports one or two 5.25 inch single or double
sided, MFM double density floppy disk drives with a data rate of 250 kilobits per second.

The FDC is controlled by way of the Drive Selection register at I/O Address 3F2. It is defined as follows:

Bit (Dn) Output Use

7 - 6 No effect
5 Switch motor(s) on and enable drive 1 selection
4 Switch motor(s) on and enable drive 0 selection
3 Allow 765A FDC to interrupt and request DMA
2 - 765A reset
1 Drive Select Bit 1 (DS1)
0 Drive Select Bit 0 (DS0)

The Drive Select bits (DS1, DS0) are only valid for values of 00 and 01 for drives 0 and 1 respectively. The drive selection
qualification is only completed when either bit 4 (for drive 0) or bit 5 (for drive 1) is set. In addition setting bits 4 or 5 will have no
effect until the value of DS1, DS0 is correspondingly set.

Bit 2 (- 765A reset) must brought low (output as '0') and held low for at least 3.5 uS in order to reset the 765A. It must then be set
high in order to release the reset signal.

On power-up or following a system reset, all bits in this register are cleared to zero.

1.12.1 FDC Hardware Conditions

The hardware imposes the following conditions on the use of the 765A controller and disk drives:

1. The clock frequency of the 765A FDC is fixed at 4.0 MHz.
2. Disk data transfers are done by DMA using the on-board DMA controller. The 765A DRQ output may connected to or

disconnected from the DMA controller DRQ2 input by software using Drive Selection Register bit 3.
3. An interrupt level is available for use by the 765A to signal command completion and attention status to the CPU. The 765A

INT output may be connected to or disconnected from the interrupt controller IRQ6 input by software using Drive Selection
Register bit 3.

4. Drive 0 is always present. Drive 1 is optional. Drives 2 and 3 are not implemented and can never be accessed. (No select
signal decode is implemented for these drives.) Drive Ready output signal from the currently selected drive is connected to the
765A RDY input. For drives which do not a drive ready output the 765A RDY input may be optionally fixed to the true condition.

5. The 765A Drive Select outputs US1 and US0 are not used to select the drives. This function together with motor control is done
via the Drive Selection Register which is external to the FDC 765A.

6. The FLT (Fault) input 765A is forced permanently false.
7. A Two-Sided status signal from the drive(s) is not provided but interface to the drives allows the use of double sided drives.
8. Write precompensation of 250 ns is provided.
9. The 765A may be individually reset by software using Drive Selection Register bit 2.

1.13 RS232C Asynchronous Serial Port

The asynchronous serial port is configured to I/O addresses 3F8h - 3FFh and is based on the National INS8250 ACE (or UART),
single channel device.

The clock frequency input of the 8250 is 1.8432 MHz (± 0.1%).

The 8250 BAUD OUT output is connected to the RCLK input.

An interrupt level is available for use by the 8250. When the 8250 OUT2 output is driven low (i.e. a '1' is written to bit 2 of the 8250
MODEM Control Register) then the INTRPT signal is connected to the interrupt control IRQ4 input.

1.13.1 Serial Channel Interface

The serial interface uses a 25-way subminiature D type plug (male) connector emulating a DTE (Data Terminal Equipment).

The electrical levels of signal lines on this interface conform with EIA (Electronics Industry Association) standard RS-232C (and the
equivalent CCITT V.24 interface standard).

The RS232C drivers and receivers between the 8250 and the serial channel connector are all inverting.

1.13.2 Serial Channel Pin Arrangement

Pin EIA CCITT Description

2 BA 103 TxD - Serial Data Output
3 BB 104 RxD - Serial Data Input
* 4 CA 105 RTS - Request to Send Output
5 CB 106 CTS - Clear to Send Output
6 CC 107 DSR - Data Set Ready Input
7 AB 102 Signal Ground (Common Return)
8 CF 109 DCD - Data Carrier Detect Input
* 20 CD 108.2 DTR - Data Terminal Ready Output
22 DE 125 RI - Ring Indicator Input

* These interchange circuits, where implemented, shall be used to detect either a power off condition in the equipment across the
interface, or the disconnection of the interconnecting cable. The terminator for these circuits shall interpret the power off condition or
the disconnection of the interconnecting cable as an OFF condition.

See Appendix 4 for additional details of serial signals and cable connections.

1.14 Parallel Printer Interface

The parallel printer port is described in Section 1.10 and is a general purpose 'Centronics' style 8-bit interface. The printer interface
uses a 25-way subminiature 'D' socket (female) connector located at the back of the PC1640.

The Pin assignments for the printer connector is as follows:

Pin Assignment

1 Not Data Strobe
2 Data Bit 0
3 Data Bit 1
4 Data Bit 2
5 Data Bit 3
6 Data Bit 4
7 Data Bit 5
8 Data Bit 6
9 Data Bit 7
10 Not Printer Acknowledge
11 Printer Busy
12 Paper Out
13 Select Printer
14 Not Select Auto Feed
15 Not Printer Error
16 Not Reset Printer
17 Not Printer Selected
18 GND
19 GND
20 GND
21 GND
22 GND
23 GND
24 GND
25 GND

Appendix 5 contains the Amstrad PL-2 printer lead specification for the DMP3000 printer.

1.15 Keyboard Interface

Keyboard data input to the CPU is via the 8255 PPI Port A, and the keyboard interrupt (level 1) of the 8259A PIC. Both of these have
been previously described in sections 1.6 and 1.8.

1.15.1 Serial Clock and Serial Data

The Serial Clock and Serial Data signals are used for keyboard interface. These two bidirectional signals are used by the keyboard
microcontroller to send keycodes to the main electronics board. The main electronics board also uses the same two signals to
indicate readiness to receive another keycode back to the microcontroller. In addition these two signals are used to reset the
microcontroller under hardware or software control.

1.15.2 Keyboard to Main Board Interface

The quiescent state for both Serial Clock and Serial Data is high. A minimum of 5 us must separate a transition of one signal from
another transition of the same signal, or any transition of the other signal.

Keycodes are sent from the keyboard microcontroller to the main board in 8-bit serial form MS bit first. Keycode data received by the
main board is clocked into a shift register as either a "1" bit sequence or as a "0" bit sequence. To be interpreted as a "1" bit, the
Serial Data signal must remain high during the time period when Serial Clock goes low and returns to the high state. To be
interpreted as a "0" bit, Serial Data must be low prior to the Serial Clock transition from high to low, Serial Data will then go high
followed by Serial Clock. The "1" bit or the "0" bit is clocked into the shift register on the falling edge of Serial Clock.

1.15.3 Main Board to Keyboard Interface

Upon receiving a keystroke from the microcontroller, within 5 us of the last clock falling edge, the main board electronics drives the
Serial Data line low and maintains it low until it is ready to receive a new keystroke. When the main board returns the Serial Data
signal to the high state the microcontroller is free to send another keystroke. This response to the reception of a keycode is termed
the ACKNOWLEDGE sequence.

The mainboard electronics causes a RESET to the keyboard microcontroller by driving the Serial Clock line low for 10 milliseconds
or more. The state of the Serial Data signal does not affect the reset sequence.

1.15.4 Keycodes

The 8-bit keyboard data is capable of 128 'make' codes correspondingly 128 'break' codes. For any key which is pressed, the 'make'
keycode produced is in the range of 0 - 127 decimal. When a key is released, the 'break' keycode produced is the same as the
make keycode except that the top bit is set so that the value is in the range of 128 - 511 (decimal).

After a key is pressed and the keycode has been sent to the main board electronics, if no new keys are pressed and the key has
remained pressed for more that one half second, then the keyboard microcontroller re-sends the keycode every 83 milliseconds
provided that the main board indicates by an Acknowledge sequence that is ready to accept a new keycode. The Pause/Break key
does not repeat.

The keycode 0AAh is sent after a reset to indicate successful completion of power-up tests.

The PC1640 ROM BIOS receives the keycodes via an interrupt subroutine and it 'tokenizes' them into a two-bytes value for further
conversion to ascii values by applications software which use the tokenized keyboard information. The keycodes and their
corresponding token values are covered in the ROS firmware (Section 2.3.5). Programs such as KEYBUK.EXE replace the ROM
BIOS keyboard vectors and perform their own tokenization process. Since certain of the keycodes are actually Mouse Button and
Joystick information, non AMSTRAD versions of KEYBUK will ignore these 'extraneous' keycodes resulting in a loss of a certain level
of functionality in these areas.

1.15.5 Keyboard Connector

The Keyboard connector is a 6-way Din socket. The pin assignment is as follows:

Pin Assignment

1 KBCLK Viewed from left hand side of machine

2 KBDATA

3 M1 (Mouse Button 1)

4 GND

5 +5 Volts DC

6 M2 (Mouse Button 2)

The M1 and M2 signals are connected directly to the keyboard controller in order to produce keycodes.

1.16 Mouse Interface

The mouse interface consists of two switch inputs from push buttons and two 8-bit X & Y coordinate counters. The two mouse
switches (M1 & M2) are arranged to form part of the keyboard matrix and are handled as keyboard data (producing low level
keycodes 7E and 7D respectively).

The Mouse X-Coordinate (I/O Address 078h) is an 8-bit counter which can be read by the CPU. Any write access regardless of the
value written to the X-Coordinate location clears the counter. Similarly the Mouse Y-Coordinate (I/O Address 07Ah) can be read by
the CPU or cleared by any write access to its I/O address.

The counters are incremented or decremented according to the direction of movement of the mouse, and their values indicate the
mouse movement since last read or cleared. The X-Coordinate counter increments for "Right" motion and decrements for "Left"
motion. The Y-Coordinate counter increments for "UP" motion and decrements for "Down" motion. In order to properly track mouse
motion, software should read and clear the coordinate counters at a rate high enough to prevent overflow from positive values to
negative values or negfative values to positive values for a fairly high rate of mouse movement. The scaling of mouse movement is
such that one increment of the counter represents 1/8 mm of physical mouse motion.

The delivered operating systems have AMSTRAD specific mouse drivers which actively perform the Read-and-Clear operation
(every 18 ms) using the ticker interrupt. This can cause the appearance of no mouse motion to the casual observer sampling the
mouse coordinate counters. See Appendix 1 for additional details concerning Mouse Software Interfaces.

1.16.1 Mouse Connector

The mouse connector is a 9 way D type (female) connector located on the left hand side of the case and it has an AMSTRAD
specific pinout. Attaching any other manufacturer's hardware (even though the connector may be similar) to the PC1640 mouse
connector may cause serious damage to either the main board electronics or to the alternative (mouse) hardware.

The mouse connector pin assignments are as follows:

Pin Assignment

1 XA

mouse connector

2 XB

3 YA

4 YB

5 Spare

6 M1

7 +5 Volts DC

8 GROUND

9 M2

The first four pins contain optically encoded phase XA, XB, YA and YB square waves. For positive motion the square wave on the A
phase leads the B phase by 90 degrees with the reverse being true for negative motion.

The remaining pins carry Mouse Button 1 (M1), 5V power, Ground and Mouse Button 2 (M2) signals.

1.17 Joystick Interface

The AMSTRAD PC supports an industry standard joystick interface. The joystick inputs are handled as keycodes from the keyboard
interface. The low level keycodes are in the range of 7C down to 77 (hexadecimal) corresponding to Up, Down, Left, Right, Fire1 and
Fire2 respectively. The ROS firmware (See section 2) translates the directional codes to cursor key tokens and the Fire buttons can
be assigned variable tokens depending on NVR settings.

1.17.1 Joystick Connector

The joystick connector is a 9 way D type (male) connector with an industry standard pinout. Attaching an incorrect device (even
though the connector may be similar) to the PC1640 joystick connector may cause serious damage to either the main board
electronics or to the incorrect (joystick) hardware.

The Joystick Socket is located on the rear left corner of the keyboard. Its pinout is as follows:

Pin Assignment

1 Up

joystick connector

2 Down
3 Left
4 Right
5 Spare
6 Fire 2
7 Fire 1
8 Common
9 Not Connected

Viewed from rear of keyboard

1.18 Light Pen Connector

The AMSTRAD PC1640 Supports a standard light pen interface via the emulated MC6845. The Light Pen connector is located by

removing the expansion slot cover at the rear of the machine. The connector is located inside the PC case on the right hand edge of
the main board just forward of the expansion card connectors. It consists of a 6-way berg strip and is labeled PL8 (LIGHT PEN) in
large letters. Pin 1 is the forward most pin viewed from in front of the machine (the disk drive end).

The pin assignment is as follows:

Pin Assignment

1 -Light Pen Input.
2 (Keyway)
3 -Light Pen Switch.
4 Ground.
5 +5 Volts DC.
6 +12 Volts DC.

1.19 Expansion Card Interface

The AMSTRAD PC1512 has three slots for additional peripheral cards. These consist to a set of connectors in the right rear of the
main board. The Pin numbering of the each connector is the same and is such that the left (ground plane) side is numbered B1 -
B31 top to bottom and the right (component) side is numbered A1 - A31 top to bottom. The following table defines the pin
assignments of the expansion interface:

Pin Signal In/Out

A01 Not I/O CHCK In
A02 I/O Data Bit D7 In/Out
A03 I/O Data Bit D6 In/Out
A04 I/O Data Bit D5 In/Out
A05 I/O Data Bit D4 In/Out
A06 I/O Data Bit D3 In/Out
A07 I/O Data Bit D2 In/Out
A08 I/O Data Bit D1 In/Out
A09 I/O Data Bit D0 In/Out
A10 I/O RDY In
A11 AEN - Address Enable Out
A12 I/O + Mem/Address Bit A19 Out
A13 I/O + Mem/Address Bit A18 Out
A14 I/O + Mem/Address Bit A17 Out
A15 I/O + Mem/Address Bit A16 Out
A16 I/O + Mem/Address Bit A15 Out
A17 I/O + Mem/Address Bit A14 Out
A18 I/O + Mem/Address Bit A13 Out
A19 I/O + Mem/Address Bit A12 Out
A20 I/O + Mem/Address Bit A11 Out

Pin Signal In/Out

A21 I/O + Mem/Address Bit A10 Out
A22 I/O + Mem/Address Bit A09 Out
A23 I/O + Mem/Address Bit A08 Out
A24 I/O + Mem/Address Bit A07 Out
A25 I/O + Mem/Address Bit A06 Out
A26 I/O + Mem/Address Bit A05 Out
A27 I/O + Mem/Address Bit A04 Out
A28 I/O + Mem/Address Bit A03 Out
A29 I/O + Mem/Address Bit A02 Out
A30 I/O + Mem/Address Bit A01 Out
A31 I/O + Mem/Address Bit A00 Out

B01 Ground --
B02 RESET Out
B03 + 5 Volts DC --
B04 IRQ2 In
B05 - 5 Volts DC --
B06 DREQ2 In
B07 - 12 Volts DC --
B08 Not Connected (Reserved) In
B09 + 12 Volts DC --
B10 Ground --
B11 -MEW (Memory Write) Out
B12 -MRD (Memory Read) Out
B13 -IOW (I/O Write) Out
B14 -IOR (I/O Read) Out
B15 -DACK3 Out
B16 DREQ3 In
B17 -DACK1 Out
B18 DREQ1 In
B19 -DACK0 Out
B20 CLK Out
B21 IRQ7 In
B22 IRQ6 In
B23 IRQ5 In
B24 IRQ4 In
B25 IRQ3 In
B26 -DACK2 Out
B27 T/C Out
B28 ALE Out
B29 + 5 Volts DC --
B30 CK14 Out
B31 Ground --

Expansion Bus Connector
Viewed from above while standing in front of machine

The I/O expansion slots are laid out the same as the industry standard 16-bit Personal Computer bus. The translation from the
internal 16-bit 8086 bus to the 8-bit I/O bus layout is done by main board circuitry. Any 16-bit CPU I/O transfers will be broken down
into two 8-bit cycles (with wait states) by this circuitry.

All signals are TTL compatible and can support a maximum of two low-power schottky (LSTTL) loads per slot. Power supply loading
per slot should be limited to a maximum of 700 milliamperes on the + 5 Volt supply, to 100 milliamperes on the - 5 Volt supply, to

700 milliamperes on the + 12 Volt supply and to 100 milliamperes on the - 12 Volt supply.

Note that direct access to the on-board 16-bit fast memory bus is not available via the I/O expansion slots.

Additional engineering details for prototyping adapter boards should be supplied as part of the documentation for that particular
hardware.

1.20 Video Connector

The video connector is a 9-way D type (female) socket located in the rear of the computer. Its pinout is as follows:

Pin Assignment

1 Ground

Video Connector

2 Secondary Red (r) or Ground (GND)

3 Primary Red (R)

4 Primary Green (G)

5 Primary Blue (B)

6 Secondary Green (g) or Intensity (I)

7 Secondary Blue (b) or Mono Video (V)

8 Horizontal SYNC

9 Vertical SYNC

The same pinout is used for all three display types but the interpretation of a particular pin's function varies with the connected
device. In addition certain devices require that pin 2 exhibit a full ground characteristic and this is accomplished by switch 8 (sw8) at
the rear of the PC1640. When sw8 is in the OFF position pin2 is grounded. When sw8 is in the ON position then the secondary red
(r) signal is routed through to pin 2 (See section 1.22 - PC1640 Switch Settings.)

1.21 Power Connector

The power connector is a 14-way Din socket located in the rear of the computer. Power is routed from the power supply located in
the monitor to the main board electronics through the power connector. Its pinout is as follows:

Pin Assignment

1 Not Connected

Power Connector

2 0 Volts DC
3 + 5 Volts DC
4 0 Volts DC
5 + 5 Volts DC
6 Not Connected
7 Not Connected
8 0 Volts DC
9 - 12 Volts DC
10 0 Volts DC
11 + 12 Volts DC
12 0 Volts DC
13 - 5 Volts DC
14 Not Connected

1.22 PC1640 Display Selector Switch Settings.

The Internal Graphics Adapter initial mode switches are as follows:

sw4 sw3 sw2 sw1 Primary Adapter Secondary Adapter

OFF ON OFF OFF MD (Mono) Internal CGA (CO80) External
OFF ON OFF ON MD (Mono) " CGA (CO40) "
OFF ON ON OFF ECD350 (CO80) " MDA/HERC (Mono) "
OFF ON ON ON * ECD200 (CO80) " MDA/HERC " "
ON OFF OFF OFF * CD (CO80) " MDA/HERC " "

sw4 sw3 sw2 sw1 Primary Adapter Secondary Adapter

ON OFF OFF ON CD (CO40) " MDA/HERC " "

ON OFF ON OFF CGA (CO80) External MD (Mono) Internal
ON OFF ON OFF CGA (CO40) " MD (Mono) "
ON ON OFF OFF MDA/HERC (Mono) " ECD350 (CO80) "
ON ON OFF ON MDA/HERC " " * ECD200 (CO80) "
ON ON OFF ON MDA/HERC " " * CD CO80 "
ON ON ON ON MDA/HERC " " CD (CO40) "

* See note 3 below.

sw5:
OFF for true EGA mode.
ON for CGA/MDA/HERC emulation modes.
(Also called 6845 compatible modes.)

sw8:
OFF for CD (Standard RGB) Monitors.
ON for ECD (Enhanced RGB) Monitors.

The IGA foreign font switches are as follows:

sw10 sw9 sw7 sw6

OFF OFF -- -- English Font
OFF ON ON ON English Font
OFF ON OFF OFF Danish Font
OFF ON OFF ON Portugese Font
OFF ON ON OFF Greek Font

Switches sw6, sw7 and sw10 are used by the IGA BIOS ROM to select an alternate set of characters to be loaded into the IGA fonts
RAM for characters in the range of 128 to 255.

Switch sw9 (when set to 'OFF') has the effect of switching off the foreign fonts section of the IGA ROM (in the address range C4000h
- C7FFFh). This forces the IGA BIOS to select the english fonts which are stored below address C4000. Switching sw9 to OFF also
enables any controller device using this address range to place its controller ROM in the C4000 to C7FFF address space and it will
not conflict with the foreign fonts section of the IGA ROM.

The IGA can be switched off by turning sw10 to the 'ON' position. When this is done, switches sw1 to sw5, sw8 and sw9 have no
effect and in addition, switches sw6 and sw7 assume a different function in that they are used by the PC1640 ROS for setting the
default display mode (DDM) as follows:

sw10 sw9 sw7 sw6

ON -- OFF OFF External EGA installed.
ON -- OFF ON External CGA in 40 Column Mode
ON -- ON OFF External CGA in 80 Column Mode
ON -- ON ON External Monochrome Adapter (MDA or Herc)

Notes:

1. During bootstrap all messages will be sent to the primary adapter.
2. In order to switch text output to the secondary adapter the MODE utility is required. The sw1 - sw4 table gives the required

MODE parameter enclosed in parenthesis for text output to the device.
3. The ECD350 and ECD200 switch settings specify whether the default text display will be in high resolution (350 line) mode or

in low resolution (200 line) mode. ECD200 appears the same as CD (CO80) in the default text mode. However graphics
software may examine the switch settings to determine if 350 line mode is achievable. An incorrect switch setting may cause
software to switch the display setup to 350 lines and if a PC-ECD display is not truly fitted, incorrect synchronization will be
output. While this may not actually damage the (PC-CD) display the screen will continuously roll and the system may have to
be bootstrapped to recover.

4. Secondary Adapter(s) listed in the sw1 - sw4 table section are optional where they are noted as being external and the
respective switch settings merely inform software such as the ROM BIOS and MODE.EXE what the desired setup
characteristics will be if the device is sensed as being installed. When the primary adapter is listed as an external device then
it is required and system initialization will fail if the device is not installed.

Contents Index Section 2

Section 1 Index Section 3

2.0 Firmware
This section describes the Amstrad PC1640 Resident Operating System (ROS) and the Internal
Graphics Adapter (IGA) ROM BIOS. It defines the interfaces to all the interrupt service routines provided
by the Amstrad PC1640 ROS firmware (ROM) and all RAM locations used by the ROS.

The following copyright message is stored at the beginning of the ROS starting at location 0003
(relative to its origin at FC000):

(C) Copyright 1987 AMSTRAD plc

The ROS physically occupies the highest 16K bytes (in the address range FC000 to FFFFF) in the 1
Mega Byte addressing range of the 8086-2 CPU (See Figure 1.1). The total 64K byte address range
from hexadecimal F0000 to FFFFF is reserved for system ROM and this contains the reset and
initialization address FFFF0. The PC1640 address decoding for the system ROM area is such that the
ROS ROM which actually resides at FC000 is repeated four times in the address space starting at
F0000.

Note that all address constants in this document are in hexadecimal form unless otherwise noted.

All calls to the ROS and IGA BIOS firmware should be made through the software interrupts disclosed
in this manual. Application programs must not attempt to access the locations within the ROM area
directly. Amstrad reserves the right to modify the coding within the Resident Operating System ROM and
the IGA BIOS ROM as it sees fit.

The firmware provides a set of resident software routines which perform various services and I/O
functions:

1. Power-Up initialization and Self Test.
2. Keyboard input.
3. Video display of characters and pixels.
4. Video buffer screen dumping.
5. Character I/O to the printer and serial ports.
6. System clock and real time clock support.
7. Floppy Disk I/O including format, read and write.

To ensure hardware independence of application programs all I/O processes should be done using the
ROM firmware software interrupts. This avoids possible problems due to any hardware modifications
and/or enhancements.

2.1 Power-Up initialization and Self Test

The Power-Up initialization and Self Test function is entered at location FFFF0, the CPU reset entry
point. This is a collection of routines which perform all necessary hardware initialization and self tests,
setting up of the BIOS RAM variable area, initialization all the interrupt locations used by the ROS,
initialization of expansion slot peripheral ROMs and the running of floppy diskette or hard disk
bootstrap.

The ROS does not use the System RAM (User RAM Area) for stack or program variables until it has
been successfully tested. If a RAM error is found an error message should be displayed correctly,
assuming there is no other fault that may result in incorrect operation of the CPU or Video Circuitry.

The Power-Up initialization and Self Test process proceeds as follows:

1. Disable maskable and non-maskable interrupts.
2. Run self test which include the following:

Checksum of the ROS.
Test all system RAM.
8237 DMA controller.
8253 Programmable Interval Timer.
8255 Programmable Peripheral Interface.
RTC counting.
The system serial interface.
The system printer interface.
8259 programmable interrupt controller.
Mouse X and Y counter registers.

After a system reset all the self tests except the RAM tests are rerun. If the three option links in the
least significant part of the system printer status register are set to all ones then diagnostic mode
is selected and if the diagnostic test ROM pack is found, it is entered, otherwise only the keyboard
and disk tests are run before external ROM initialization and system startup is attempted.

Refer to section 2.2 for the individual power-up self test details.

3. Checksum the NVR.

If the checksum of the NVR is incorrect then it is loaded with its default values (See page 169).

4. Initialise the 8253 Programmable Interval Timer.

Set up counter 0 to interrupt every 54.9337 milliseconds. Set up counter 1 to generate an output signal
with a period of 15.13 microseconds. Disable counter 2.

5. Initialise the 8237 DMA controller.

Set up DMA channel 0 for memory refresh. Disable channel 1, 2 and 6.

6. Initialise the 8259 Programmable Interrupt Controller.

Disable (mask) all interrupt levels. Note that levels 0, 1 and 3 are enabled (unmasked) later.

7. Initialise the Write Status Registers.

Write Status-1 is initialised from a byte in the NVR defining the number of drives fitted and the default
Video Mode. The ROS also sets or resets bit 1 in the status register depending on whether or not an
8087 NDP is installed. See section 1.8 for further System Status-1 information.

Write Status-2 is initialised according to the amount of memory installed. The ROS assumes a

minimum of 512K bytes and that additional RAM may be added in contiguous 32k byte increments up to
the maximum of 640K bytes. The additional memory is sized according to the following procedure. The
segment address of each of the four 32K byte RAM blocks is written to the first two bytes of each
respective block. The segments are then verified from low to high until a non matching segment
address or the last block is encountered. The setting of the Write Status-2 register is according to the
RAM0-RAM4 table in section 1.8.3.

8. Initialise the ROS variable area in system RAM.

The ROS uses variables in the address range of 00300 to 00500. Refer to section 2.4 (RAM Variables)
for a complete description of these variables and their respective initialised values.

9. Initialise the first 32 Interrupt Vectors.

The first 32 interrupt vectors are set up to reference the ROS routines as listed below. Software interrupt
routines which do not perform any function reference a dummy routine that simply does a return from
interrupt (IRET) instruction. Hardware service interrupts which do not perform any function reference a
dummy (HWIRET) routine which issues a nonspecific end-of-interrupt to the 8259 interrupt controller
and then executes an IRET instruction.

Interrupt Purpose Type

0 Divide by Zero Hardware (HWIRET)
1 Single Step Hardware (HWIRET)
2 Parity error routine (NMI) Hardware
3 Break Hardware (HWIRET)
4 Overflow Hardware (HWIRET)
5 Print Screen Software
6 Reserved Software
7 Reserved Software
8 System Clock interrupt Hardware
9 Keyboard interrupt Hardware
10 RTC interrupt Hardware (HWIRET)
11 COMMS Hardware (HWIRET)
12 COMMS Hardware (HWIRET)
13 Hard Disk Hardware (HWIRET)
14 Floppy Disk interrupt routine Hardware
15 Printer interrupt Hardware (HWIRET)
16 Video I/O Software
17 System Configuration Software
18 Memory Size Software
19 Disk I/O Software
20 Serial I/O Software
21 Enhanced function(s) Software
22 Keyboard I/O Software
23 Printer I/O Software
24 System Restart Software
25 Disk Bootstrap Software

Interrupt Purpose Type

26 System Clock and RTC I/O Software
27 Keyboard Break Software (IRET)
28 External Ticker interrupt Software (IRET)
29 Video parameter table Software Vector
30 Disk Parameter table Software Vector
31 External 8x8 Char Matrix table Software Vector

The interfaces to the above routines are detailed in section 2.3.

The 8259 PIC is programmed such that its IRQ0 - IRQ7 interrupt levels use CPU interrupt vectors 8 - 15
as indicated in the above table.

10. Initialise and Test the Disk interface.

The initialise function of interrupt 19 in invoked followed by the disk test (see 2.2.12).

11. Keyboard Self Test.

The Keyboard microcontroller returns 0AAh upon successful completion of its power-up self test (See
2.2.15).

12. Initialise the Video Display.

The initial video testing is done by IGA BIOS ROM if it is enabled else the ROS performs testing as
described in section 1.8.2

13. Initialise the 8259 Interrupt controller.

Enable 8259 interrupt controller on levels 0 (8253 counter 0), 1 (keyboard scan code receiver) and 6
(765 floppy disk controller). All other 8259 interrupt levels are masked.

14. Display the ROS sign-on message.

During power-up the ROS checksums the NVR. After the sign-on message has been displayed, the
ROS outputs a warning message if the NVR sum was incorrect. In the case that the NVR is OK (and
last startup data are valid) the time and date of last switch-on are displayed.

15. Enable the NMI.

If a NMI occurs the default ROS interrupt handler displays a RAM parity error message and hangs the
system. This condition can only be rectified by switching the machine off.

16. Initialise all external ROMs.

The ROS checks for external ROMs between addresses C0000 and F4000 in 800h (2k) byte
increments. An external ROM which conforms to the following specification will be initialised by the
ROS:

1. The first two bytes contain the hexadecimal value 55AA.
2. The next two bytes contain the size in 512 (1/2K) byte increments.
3. The next byte is the initialization routine entry point.
4. The LS byte of the byte sum of the ROM is zero.

When a ROM conforming to this specification is located then the initialization entry is called.

If the checksum test fails then an error message is displayed and initialization is not called.

The IGA BIOS ROM conforms to above standard and if it is enabled, it is entered (at C0000) and its
Power-On Self Test (POST) initialisation will perform testing and initialise:

256k of Video RAM.
Video Controller.
Load Fonts from ROM based tables.
Establish initial (default) display mode based on switch settings.
Set up Video Interrupt 16 based on display mode switch settings.

17. Diskette Bootstrap.

The ROS attempts to load the bootstrap sector (from drive A, side 0, track 0, sector 1) into memory at
07C00h. If the bootstrap sector loads successfully it is given control (far jump to segment 0000 offset
7C00). If after 10 retrys the bootstrap sector cannot be loaded then the ROS displays a message
prompting the user to insert a system disk into drive A and press a key. The ROS then waits for the key
press and repeats the bootstrap procedure.

2.2 Power-Up Self Tests

On Power-Up or following a system reset, the ROS performs a series of self tests on the hardware to
verify proper operation. When a test failure occurs, the ROS displays an error message on the primary
display device and the system is locked up. The keyboard interface is treated differently in that the ROS
repeats keyboard self test until it is successful.

The ROS executes all self tests except when the option links (LK1 - LK3) are all set (See section
1.10.3), the ROS will only run the keyboard interface test and the disk test. If either of these two tests fail
an error message is displayed but the error is ignored. This allows the system to be brought up for
diagnostic testing.

When a soft reset (Control, Alt and Del) is issued the ROS performs all the self tests except the system
RAM (User Area RAM) test and the video RAM test. The program calling the ROS initialization after a soft
reset must store the value 1234h in system location 0:478h and this value notifies the ROS firmware
that a soft reset was requested. When the 1234h value is recognized a full hardware reset is performed
and this will reset all external peripheral cards in the expansion bus. A special entry flag value, 1235h
performs the ROS Power-Up testing as described above but inhibits the full hardware reset from
occurring. The ROS sets the contents of the word location at 0:488 to 1234h when it completes its
testing.

2.2.1 Test Procedure.

Upon entry the ROS performs the necessary functions to start video output from the IGA or any other
primary display adapter, and then stores the message ("Please wait") on the first line of the screen to

indicate that self testing is in progress and as each successive self test is started a dot is displayed on
the screen.

The tests are run in the following order:

1. ROS checksum test.
2. Direct Memory Access (8237) Controller test.
3. Programmable Interval timer (8253) test.
4. Programmable Peripheral Interface (8255) test.
5. Real Time Clock (HD146818) test.
6. Asynchronous Communications Element (8250) test.
7. Parallel Printer Port test.
8. Mouse X and Y count register test.
9. System RAM test.

10. Programmable Interrupt Controller (8259) test.
11. Disk test.
12. Keyboard Interface test.

The ROS uses the stack during the Disk test, the Keyboard interface test and the Programmable
Interrupt Controller test. All other self tests are executed without using either the stack or any RAM
variables.

2.2.2 Test Methods.

Most of the device diagnostic tests consist of a Data Path test and a Waveform test as described below:

Data Path test.

The data path test checks the read/write path between the CPU and a particular device. A pattern
is written to a device and then read back to verify the integrity of the data path. The patterns are as
follows:

All zeros.
All ones.
Sliding single bit and complement across 8 bits.

Waveform test.

The waveform test detects address decoding errors in a hardware device. The waveform test
consists of selecting a specific address in a device, writing a test pattern (usually 0FFFFh) and
verifying that the same pattern can be read back. The waveform test is done in both ascending
sequential order (upwards) and descending sequential order (downwards) in order to check that
the address decoding logic works correctly.

2.2.3 ROS Checksum Test.

All bytes in the Resident Operating System ROM are summed and then checked that the least
significant byte of the sum is zero. If the check fails then an error message indicating faulty ROM
checksum is displayed.

2.2.4 Direct Memory Access Controller test.

The upwards/downwards waveform test is used to confirm that the registers in the DMA controller chip
can be addressed. Any failure will cause the faulty DMA error message to be displayed.

2.2.5 Programmable Interval Timer test.

The fiest 8253 test is a read/write data path test to counter 2 followed by a check that counter 1 counts at
the correct rate. If either test fails an interval timer error message is displayed.

2.2.6 Programmable Peripheral Interface test.

The 8255 PPI tests consists of a data path test on each of the two system status channels (Status-1
and Status-2). The 8253 PIT OUT2 (Status-2) bit is also checked for proper operation. If either test fails
the faulty real time clock error message is displayed.

2.2.7 Real Time Clock test.

The RTC seconds counter is tested to be counting at the correct rate. Next a data path test on the
checksum byte of the NVR is run (and the checksum byte is restored). If either test fails the faulty real
time clock error message is displayed.

2.2.8 Asyncronous Communications Element test.

This test confirms that the transmitter and receiver of the 8250 (i. e. the system serial port) are
functioning correctly (at least in diagnostic mode).

The 8250 is configured in loop mode, 9600 baud, 8 data bits, 1 stop bit and no parity. Two test patterns
are transmitted and the received patterns are checked. The status register is monitored for no parity,
framing or overrun errors. If either received pattern does not equal the sent pattern or an error is set in
the status register the faulty system serial port error message is displayed.

2.2.9 Printer Parallel Port test.

A data path test is performed on the printer data latch. If any incorrect test pattern is returned, the faulty
printer port error message is displayed.

2.2.10 Mouse X and Y Count Register test.

The X and Y registers are cleared and then read to verify that they both contain zero. If the test fails the
faulty mouse coordinate register error message is displayed.

2.2.11 System RAM test.

The amount of System (User Area) RAM is determined using the procedure described in section 2.1
(This should always produce 640K as the answer). The data path test is run on all available RAM
followed by an upwards/downwards waveform test. If either test fails the faulty RAM error message is
displayed.

2.2.12 Programmable Interrupt Controller test.

The 8259 tests consist of a data path test on the interrupt mask register and an interrupt acknowledge

test to confirm that interrupts can occur and be serviced. If the test fails the faulty interrupt controller
message is displayed.

2.2.13 Disk test.

The disk test attempts to establish whether the drives fitted to the system seek correctly. The test moves
the read/write heads to track 10 on each drive. The ROS does not verify that the correct track was
attained. If any errors are reported then a floppy disk controller error message is displayed.

2.2.14 Keyboard Interface test.

Upon power-up or reset, the keyboard self test is performed by the keyboard controller firmware. The
keyboard returns keycode 0AAh to signify the successful completion of its testing. If any key code other
than 0AAh is returned the keyboard error message is displayed amd keyboard reset is issued (which
reruns the keyboard self test). The Keyboard test is repeated until the keyboard test passes. When test
pass is received, the error message is removed from the screen and the test is exited as normal.
During the keyboard test a short beep is sounded every five seconds to indicate that the test is in
progress.

2.3 ROM Firmware Interrupts.

The first 32 interrupt vectors are initialised by Power-Up initialization. The software IRET and hardware
HWIRET entries are dummy routines which require no entry or exit conditions and are not detailed here.

Any application program which replaces a default interrupt vector with its own entry point must not
invoke any ROS interrupts from within its own interrupt service routine.

2.3.1 Interrupt 2: Parity Error (NMI).

The Interrupt 2 routine deals with system RAM parity error. The screen is switched to the default display
mode, cleared and a RAM parity error message is displayed. The machine cannot be used until the
power switch is cycled off and on again.

This routine does not use RAM for stack or program variables.

An application program which makes use of the 8087 NDP must supply an interrupt 2 service routine
for the 8087 NDP.

CPU registers are used as follows:

Entry:
No conditions.

Exit:
Doesn't exist.

2.3.2 Interrupt 5: Print Screen.

The Interrupt 5 routine dumps the screen in character mode to the primary printer port. Since the screen
dump is character based, attempting to dump graphic pictures to the printer may produce incorrect
results. Characters that cannot be read back from the screen in graphics mode (using the video

interrupt 16 read character function) are printed as spaces.

If a screen print is already in progress the interrupt takes no action.

The Print Screen Status variable (at address 00500) is set to 1 while the screen dump is in progress.
When complete the variable is set to zero. If the screen dump is abandoned due to printer port timeout,
the variable is set to 255.

CPU registers are used as follows:

Entry:
No conditions.

Exit:
All flags and registers preserved.

2.3.3 Interrupt 6: Mouse Button Control.

The ROS interrupt 6 routine provides default mouse button services. The keyboard firmware generates
a set of make/break keycodes when either of the two mouse buttons is pressed and released. When
the keyboard interrupt routine recognizes a mosue button keycode it invokes interrupt 6. The default
ROS routine will either obtain the appropriate keycode from the NVR and return with the carry flag set in
the case of a make code or return with the carry flag clear in response to a mouse button break code.

CPU registers are used as follows:

Entry:
Register AL = Mouse Key Code
Bit 0 specifies which mouse button:

0 = Mouse Button M1.
1 = Mouse Button M2.

Bit 7 specifies whether make or break:
0 = Mouse Button make.
1 = Mouse Button break.

Exit:
Carry Flag & Register Ax specify action:
Carry SET:

Insert a key token into the keyboard buffer.
AX = Key Token to be inserted.

Carry CLEAR:
No action to be taken.
AX is corrupt.

All other flags corrupt. (also BX, CX & DX may be corrupt.)
All other registers preserved.

Note: A key token value of FFFFh is ignored and is not put in the keyboard buffer.

2.3.4 Interrupt 8: System Clock Interrupt.

The interrupt 8 routine is invoked by the system clock (counter 0 of the 8253). The default ROS routine
does the following:

1. Increment the 32-bit system clock count held in RAM (location 0046C). If the clock reaches the 24
hour time (0001855000h) then the count is reset to zero and the 24 hour flag (location 00470) is
set to 0FFh.

2. If the least significant byte of the system clock count is zero then the current time and date in the
real time clock (RTC) is copied to the NVR. The time that is last copied from the RTC before the
machine is switched off is displayed when the machine is next switched on.

3. If the disk motor timeout count is not zero then it is decremented by one. If the count reaches zero
all the drive motors are turned off.

4. Invoke interrupt 28. Application programs that want to be interrupted by the system clock should
use interrupt 28.

CPU registers are used as follows:

Entry:
No conditions.

Exit:
All flags and registers preserved.

2.3.5 Interrupt 9: Keyboard Interrupt.

The ROS Keyboard hardware interrupt reads a key code from the keyboard interface, translates the key
code into a 16-bit key token using an internal translation table and the key token is put into the key token
buffer. If the buffer is full the key token is discarded and a bleep is output on the speaker. The key
tokenization for the most part consists of the high byte being the key number and the lower byte being
the ASCII for the keycap. Those keys for which there is no ASCII equivalent the token consists of a
unique high byte value with the low byte cleared.

Entry:
No conditions.

Exit:
All flags and registers preserved.

The ROS Keycode translation table is as follows (all values are hexadecimal) and the key names are
the USA versions:

Key Code Key Cap (US) Normal Num Lock ALT CTRL SHIFT

01 ESC 011B 01F0 011B 011B N/A
02 1 and ! 0231 7800 Ignored 0221 N/A
03 2 and @ 0332 7900 0300 0340 N/A
04 3 and # 0433 7A00 Ignored 0423 N/A
05 4 and $ 0534 7B00 Ignored 0524 N/A
06 5 and % 0635 7C00 Ignored 0625 N/A
07 6 and ^ 0736 7D00 071E 075E N/A
08 7 and & 0837 7E00 Ignored 0826 N/A
09 8 and * 0938 7F00 Ignored 092A N/A
OA 9 and (0A39 8000 Ignored 0A28 N/A
0B 0 and) 0B30 8100 Ignored 0B29 N/A
0C - and _ 0C2D 8200 0C1F 0C5F N/A
0D = and + 0D3D 8300 Ignored 0D2B N/A

Key Code Key Cap (US) Normal Num Lock ALT CTRL SHIFT

0E <-Del 0E08 0EF0 0E7F 0E08 N/A
0F Tab 0F09 A500 9400 0F00 N/A
10 Q 1071 1000 1011 1051 N/A
11 W 1177 1100 1117 1157 N/A
12 E 1265 1200 1205 1245 N/A
13 R 1372 1300 1312 1352 N/A
14 T 1474 1400 1414 1454 N/A
15 Y 1579 1500 1519 1559 N/A
16 U 1675 1600 1615 1655 N/A
17 I 1769 17000 1709 1749 N/A
18 O 186F 1800 180F 184F N/A
19 P 1970 1900 1910 1950 N/A
1A [and { 1A5B 1AF0 1A1B 1A7B N/A
1B] and } 1B5D 1BF0 1B1D 1B7D N/A
1C Return Key 1C0D 1CF0 1C0A 1C0D N/A
1D Ctrl Ignored Ignored ---- Ignored N/A
1E A 1E61 1E00 1E01 1E41 N/A
1F S 1F73 1F00 1F13 1F53 N/A
20 D 2064 2000 2004 2044 N/A
21 F 2166 2100 2106 2146 N/A
22 G 2267 2200 2207 2247 N/A
23 H 2368 2300 2308 2348 N/A
24 J 246A 2400 240A 244A N/A
25 K 256B 2500 250B 254B N/A
26 L 266C 2600 260C 264C N/A
27 ; and : 273B 27F0 Ignored 273A N/A
28 ' and " 2827 28F0 Ignored 2822 N/A
29 # and ~ 2960 29F0 Ignored 297E N/A
2A Left Shift Ignored Ignored Ignored Ignored N/A
2B \ and | 2B5C 2BF0 2B1C 2B7C N/A
2C Z 2C7A 2C00 2C1A 2C5A N/A
2D X 2D78 2D00 2D18 2D58 N/A
2E C 2E63 2E00 2E03 2E43 N/A
2F V 2F76 2F00 2F16 2F56 N/A
30 B 3062 3000 3002 3042 N/A
31 N 316E 3100 310E 314E N/A
32 M 326D 3200 320D 324D N/A
33 , and < 332C 33F0 Ignored 333C N/A
34 . and > 342E 34F0 Ignored 343E N/A
35 / and ? 352F 35F0 Ignored 353F N/A
36 Right Shift Ignored Ignored Ignored ---- N/A
* 37 * 372A 37F0 9600 372A N/A
38 Alt Ignored ---- Ignored Ignored N/A
39 Space Bar 3920 3920 3920 3920 N/A

Key Code Key Cap (US) Normal Num Lock ALT CTRL SHIFT

* 3A Caps Lock Ignored Ignored Ignored Ignored N/A
3B F1 3B00 6800 5E00 5400 N/A
3C F2 3C00 6900 5F00 5500 N/A
3D F3 3D00 6A00 6000 5600 N/A
3E F4 3E00 6B00 6100 5700 N/A
3F F5 3F00 6C00 6200 5800 N/A
40 F6 4000 6D00 6300 5900 N/A
41 F7 4100 6E00 6400 5A00 N/A
42 F8 4200 6F00 6500 5B00 N/A
43 F9 4300 7000 6600 5C00 N/A
44 F10 4400 7100 6700 5D00 N/A
* 45 Num Lock Ignored Ignored PAUSE Ignored N/A
* 46 Scroll Lock Ignored Ignored Ignored Ignored N/A
47 Key Pad 7 4700 Ignored 7700 N/A 4737
48 Key Pad 8 4800 Ignored Ignored N/A 4838
49 Key Pad 9 4900 Ignored 8400 N/A 4939
4A Key Pad - 4A2D Ignored Ignored N/A 4A2D
4B Key Pad 4 4B00 Ignored 7300 N/A 4B34
4C Key Pad 5 Ignored Ignored Ignored N/A 4C35
4D Key Pad 6 4D00 Ignored 7400 N/A 4D36
4E Key Pad + 4E2B Ignored Ignored N/A 4E2B
4F Key Pad 1 4F00 Ignored 7500 N/A 4F31
50 Key Pad 2 5000 Ignored Ignored N/A 5032
51 Key Pad 3 5100 Ignored 7600 N/A 5133
* 52 Key Pad 0 5200 Ignored Ignored N/A 5230
53 Key Pad . 5300 Ignored Ignored N/A 532E
54 - 6F Undefined Ignored Ignored Ignored Ignored Ignored
* 70 Del -> N/A N/A N/A N/A N/A
71 - 73 Undefined Ignored Ignored Ignored Ignored Ignored
* 74 Enter N/A N/A N/A N/A N/A
75 - 76 Undefined Ignored Ignored Ignored Ignored Ignored
* 77 Joy Fire2 N/A N/A N/A N/A N/A
* 78 Joy Fire1 N/A N/A N/A N/A N/A
* 79 Joy Right 4D00 4D00 4D00 4D00 4D00
* 7A Joy Left 4B00 4B00 4B00 4B00 4B00
* 7B Joy Down 5000 5000 5000 5000 5000
* 7C Joy Up 4800 4800 4800 4800 4800
* 7D Mouse M2 N/A N/A N/A N/A N/A
* 7E Mouse M1 N/A N/A N/A N/A N/A
7F Undefined Ignored Ignored Ignored Ignored Ignored

Joystick keys produce their respective cursor keys.

Key codes marked with '*' cause special actions as explained below.

The table positions marked 'Ignored' are physically marked in the table by a value with the MS bit set
and this causes the keyboard processor to ignore these keystroke combinations.

2.3.5.1 Special Key Actions.

Some keys or set of keys invoke a special action as detailed below. Unless otherwise stated they do not
result in any key tokens being inserted into the buffer.

1. [Ctrl]+[Alt]+[Del]: Reset.
When reset is detected, a system hardware reset is issued. The power-up initialisation process is
entered but System RAM and video RAM tests are not run.

2. [Ctrl]+[Nun Lock]: Pause.
The ROS waits for another key to be pressed (except [Ctrl]+[Num Lock]), thus suspending any
application that is running. Since the keyboard firmware lights the light on the Num Lock key the
ROS toggles the Num Lock flag so that the system ROS and the keyboard firmware are in step
with each other. Note that programs such as KEYBUK do not perform this extra function so there
may be some confusion in these cases.

3. [Ctrl]+[Scroll Lock]: Break.
When break is detected, interrupt 27 is invoked and the keyboard buffer is cleared. Key token
0000h is then inserted into the buffer.

4. [Shift] + [PrtSc]: Print Screen.
When print screeen is detected interrupt 5 is invoked, the ROS print screen function. If this entry
point is maintained screen dump will continue to work. Some operating systems such as CP/M
and Dos Plus install a nul pointer here.

5. [Ins]: Insert Toggle.
Each time the Ins key (keycode 52) is received, except in Num Lock mode, the Ins key toggle bit
(bit 7 of RAM location 0:417) is inverted.

6. [Scroll Lock]: Scroll Toggle.
Each time the Scroll Lock key is pressed the scroll key toggle bit (bit 4 of RAM location 0:417) is
inverted. Note that Ctrl - Scroll Lock (break) does not flip the scroll toggle.

7. [Caps Lock]: Caps Lock Toggle.
Each time the Caps Lock key is pressed the Caps Lock toggle bit (bit 6 of RAM location 0:417) is
inverted.

8. [Num Lock]: Num Lock Toggle.
Each time the NUM LOCK key is pressed the Num Lock toggle bit (bit 5 of RAM location 0:417) is
inverted.

9. [Alt]+[Numeric Key Pad 0 to 9]: Absolute Key Token.
When the [Alt] key is held down, an absolute key token may be entered via the numeric keypad.
Pressing any other key resets the absolute key token to zero (and inserts the associated Alt-key
token for the key pressed). When [ALT] is released the absolute key token modulo 256 is placed
into the keyboard buffer, unless the token is zero, in which case it is discarded.

10. [Enter] and Fire Buttons.
When the Enter key code (74) or one of the two Joystick Fire button key codes (78 or 79) is
received an associated key token is obtained from the NVR and inserted into the key token buffer.

11. Mouse buttons.
The keyboard firmware generates four key codes to indicate when the two mouse buttons are
pressed or released. When the ROS receives one of these codes from the keyboard it does a far
call to the address held in the Mouse Button interrupt vector (Interrupt 6). A default ROS routine is
loaded into this vector upon power-up or system reset. This routine requests the ROS to insert a
key token held in the NVR into the keyboard buffer, the token used depends on which mouse

button (M1 or M2) is received. The mouse button release codes are ignored.
12. [Del ->]: Forward Delete.

When the forward delete key code (code 70) is received a key token is obtained from the NVR and
placed in the key token buffer.

13 [Alt], [Ctrl], [Shift], [Caps Lock] & [Num Lock].

The translation of various key codes into their respective tokens is affected by the current states of
these keys (which is stored in location 00417). The Shift key, while pressed, reverses the current
state of the CAPS LOCK and Num Lock. If more than one of Alt, Ctrl, Shift, Num Lock or CAPS
LOCK is active at one time then the order of precedence for key code translation is Alt, then Ctrl,
then Shift, then Caps Lock or Num Lock.

Caps Lock, when active, converts the key tokens for the lower case alphabetic keys (a - z) to their
upper case counterparts.

Note that some operating systems (such as DOS Plus) install their own entry points into the interrupt
vectors and these interrupt routines may exhibit different characteristics than those of the ROS routines
described here.

2.3.6 Interrupt 14: Floppy Disk Controller.

The ROS service routine for interrupt 14 sets bit 7 of the RAM DRIVE RESTORE FLAG, to indicate that
the Floppy Disk Controller interrupt has occurred.

CPU registers are used as follows:

Entry:
No conditions.

Exit:
All flags and registers preserved.

2.3.7 Interrupt 16: '6845 Compatible' Video I/O (int 10h).

The ROS interrupt 16 service routine provides a set of routines for reading and writing characters in
alpha and graphics mode. In graphics mode the characters are constructed using a character matrix
table (see section 2.3.21). It also provides facilities for scrolling the screen up or down, reading and
writing pixels (CGA graphics only) and reading the light pen.

It is important to note that this interrupt entry point is only active in '6845 Compatible' modes or when an
external CGA or MDA or Hercules display adapter is active and the IGA ROM BIOS is not involved. The
EGA emulation mode compatible calls are covered in section 2.3.8. It should be noted that the Int 16
call registers are much the same for the video mode calls and video character and string display. This
is because the EGA compatible mode which was implemented later is designed to be software
compatible with the earlier (this entry point's) call register setups. When the '6845 compatible' display
modes are entered either as a result of the sw5 setting (ON) or by the DISPLAY utility program, the video
int 16 vector (at 0:40h) is set to point to the ROS's video interrupt's fixed entry point (at F000:F065) and
this set of service routines becomes active. Additional hardware setups must also be performed within
the IGA to support the 6845 compatibility.

CPU registers for '6845 Compatible' Video Int 16 are used as follows:

Entry:
AH = Function Selector as follows:

0 - Set Video Mode.
1 - Set Cursor Size.
2 - Set Cursor Address.
3 - Get Cursor Address.
4 - Get Light Pen Address.
5 - Set Display Page.
6 - Scroll Screen Up.
7 - Scroll Screen Down.
8 - Read Character and Attributes.
9 - Write Character and Attributes.
10 - Write Character only.
11 - Write Color Select Register.
12 - Write Pixel.
13 - Read Pixel.
14 - Write Character in Teletype Emulation mode.
15 - Get Video Parameters.

All other registers as required by the function.

Exit:

If selector is greater than 15 then carry is set, else carry is clear.

All other flags and registers as specified by the function.

Alpha modes 0 and 1 require 2000 bytes of video RAM while alpha modes 2 and 3 require 4000 bytes
of the video RAM. The ROS takes advantage of all the video RAM available in alpha modes by
supporting multiple display pages. This means that application programs can set up a number of
display pages and switch them as required.

In general parameters passed to ROS routines are not checked and care should be taken when
choosing unusual parameters as unexpected results may occur. In particular be careful of boundary
conditions such as setting the top of the display window equal to the bottom of the display window (for
functions 6 and 7) effectively creating a one line display. In this instance the screen scrolling may not
perform as expected.

ROS Video Int 16 Function 0: Set Video Mode.

CPU registers are used as follows:

Entry:
AH = 0
AL = Mode Selector as follows:

0 - Alpha 25 Rows by 40 Columns.
1 - Same as Mode 0.
2 - Alpha 25 Rows by 80 Columns.
3 - Same as mode 2.
4 - Graphics 200 pixels by 320 pixels using palette 1.

5 - Graphics 200 pixels by 320 pixels using palette 2.
6 - Graphics 200 pixels by 640 pixels - 2 colors.
7 - Alpha 25 Rows by 80 Columns using Monochrome Adapter.

Exit:
All flags and registers preserved.

In mode 4 palette 0 may be selected by writing the color select register using Video Int 16 Function 11.
The definition of the palettes is contained in Section 1.11.2.2, Low Resolution (320x200) Graphics.

When mode 5 is selected it must be followed by a selection of palette zero (Color select register - See
1.11.5.2) in order to enable palette 2.

If the default display mode indicates an external monochrome adapter, then mode 7 is selected
regardless of the mode in AL.

To select the Video mode the ROS does the following:

1. Disable video output.
2. Reset the Cursor Addresses for all pages to row 0 column 0.
3. Output the mode to the Mode select register (3B8/3D8).
4. Reload the 6845 CRTC registers from the Video Parameter table (which is supplied by interrupt

31).
5. Clear the video RAM. If an alpha mode is selected, the video RAM is filled with white space, i.e.

ASCII space (020h) and the default attribute byte held in the NVR. The graphics mode fill is zeros.

6. If color display then set up the Color Select register (3D9h):

Set the border color to the default background color.
In graphics modes set intensified foreground colors.
In mode 6 (Graphics 640 Mode) set white foreground color.

7. For text modes select page zero.
8. Set the cursor size to start cursor from the video parameter table.
9. Enable video output.

ROS Video Int 16 Function 1: Set Cursor Size.

This function is only relevant in alpha modes as the cursor is not supported in graphics modes. It sets
the start and end scan numbers of the cursor.

CPU registers are used as follows:

Entry:
AH = 1
CH = Starting scan of cursor in range 0 to 31.
CL = Ending scan of cursor in range 0 to 31.

Exit:
All flags and registers preserved.

The ROS interprets a start value of 31 with the special meaning "turn the cursor off". In addition the 6845
hardware cursor disable function is enabled when cursor start bit register 5 is set.

ROS Video Int 16 Function 2: Set Cursor Address.

This function sets the current row and column addresses of the cursor in the specified page.

CPU registers are used as follows:

Entry:
AH = 2
BH = Page number for modes 0 to 3.

(Must be zero for all other modes.)
DH = Cursor Row Address.
DL = Cursor Column Address.

Exit:
All flags and registers preserved.

Refer to table 1.11.2.5 for valid page numbers and page starting address details.

ROS Video Int 16 Function 3: Get Cursor Address.

This function returns the current row and column address of the cursor in the specified page.

CPU registers are used as follows:

Entry:
AH = 3
BH = Page number for modes 0 to 3.

(Must be zero for all other modes.)
Exit:

DH = Cursor Row Address.
DL = Cursor Column Address.
CH = Starting scan of cursor.
CL = Ending scan of cursor.
All flags and other registers preserved.

Refer to table 1.11.2.5 for valid page numbers and page starting address details.

ROS Video Int 16 Function 4: Get Light Pen Address.

This function returns the address of the light pen.

CPU registers are used as follows:

Entry:
AH = 4.

Exit:
If Light Pen switch set then

AH = 1.
DH = Character Row address (0 to 24).
DL = Character Column address (0 to 79).
CH = Pixel Row address (0 to 199).
BX = Pixel Column address (0 to 639).

If Light Pen switch clear then
AH = 1.
BX, CH & DX preserved.

Always
All flags and other registers preserved.

ROS Video Int 16 Function 5: Set Display Page.

This function sets the active display page.

CPU registers are used as follows:

Entry:
AH = 5.
BH = Page number to be displayed.

Exit:
All flags and registers preserved.

Refer to table 1.11.2.5 for valid page numbers and page starting address details.

ROS Video Int 16 Function 6: Scroll Screen Up.

This function scrolls the active display page, or part of the active display page up a specified number of
lines.

CPU registers are used as follows:

Entry:
AH = 6.
DH = Bottom Row of area to scroll.
DL = Right most Column of area to scroll.
CH = Top Row of area to scroll.
CL = Left most Column of area to scroll
BH = Attributes for blank lines scrolled onto the bottom of the scroll area.
AL = Number of lines to roll up.

If AL = 0 then blank the specified area.
If AL not zero then roll specified area up by the number of lines in AL.
If DH = CH then AL must be zero.

Exit:
All registers preserved.
Carry is clear and all other flags corrupt.

Scrolling always takes effect on the current active display page.

Hardware scrolling is not supported. Scrolling is achieved by copying areas of Video Display RAM.

In graphics modes blank lines are filled with zeros to display the current background color.

Note this function will fail to operate properly if on entry CH equals DH and AL is not zero. This is also
true for all other compatible ROM environments.

ROS Video Int 16 Function 7: Scroll Screen down.

This function scrolls the active display page, or part of the active display page down a specified number
of lines.

CPU registers are used as follows:

Entry:
AH = 7.
DH = Bottom Row of area to scroll.
DL = Right most Column of area to scroll.
CH = Top Row of area to scroll.
CL = Left most Column of area to scroll
BH = Attributes for blank lines scrolled onto the top of the scroll area.
AL = Number of lines to roll down.

If AL = 0 then blank the specified area.
If AL not zero then roll specified area down by the number of lines in AL.
If DH = CH then AL must be zero.

Exit:
All flags and registers preserved.

Scrolling always takes effect on the current active display page.

Hardware scrolling is not supported. Scrolling is achieved by copying areas of Video Display RAM.

Note this function will fail to operate properly if on entry CH equals DH and AL is not zero.

ROS Video Int 16 Function 8: Read Character and Attributes.

This function reads the character and its associated attribute byte at the current cursor address in a
specified display page.

In graphics modes, the character pixel data is generated either from an internal character matrix table
for characters 0 to 127 or from an external character matrix table for characters 128 to 255, the address
of which is held in interrupt vector 31. See 2.3.23 for additional details.

CPU registers are used as follows:

Entry:
AH = 8.
BH = Page to read for alpha modes 0 to 3.

(Must be zero for all other modes.)
Exit:

AL = Character. (0 if no match found in Graphics Modes).
AH = Attributes byte. (Unchanged in graphics modes).
All flags and registers preserved.

Refer to 1.11.1 and 1.11.2 for the definition of the character attributes bytes.

ROS Video Int 16 Function 9: Write Character and Attributes.

This function writes a character (or a block of the same character) and its associated attribute byte to
the current cursor position in a specified display page.

In graphics modes, the character pixel data is generated either from an internal character matrix table
for characters 0 to 127 or from an external character matrix table for characters 128 to 255, the address
of which is held in interrupt vector 31. See 2.3.23 for additional details.

CPU registers are used as follows:

Entry:
AH = 9.
AL = Character to write.
BH = Page to write for alpha modes 0 to 3.

(Must be zero for all other modes.)
BL = In alpha modes

Attributes of character.
In graphic modes

Write mode as follows:
Bit 7 = 0 for character overwrite mode.
Bit 7 = 1 for character XOR mode.
Bits 0 and 1 = required character color (for modes 4 & 5 only).

CX = Repeat Count.
Exit:

All flags and registers preserved.

The repeat count specifies the number of consecutive locations to which the character and attributes
are written. In graphics modes all characters must fit on the current line.

In graphics mode if bit 7 of BL is set then the data for the specified character is exclusive ORed with the
data already in the display RAM at the cursor address.

ROS Video Int 16 Function 10: Write Character Only.

This function writes a character (or a block of the same character) to the current cursor position in a
specified display page. In alpha modes the attribute bytes for all characters written remains unchanged.

In graphics modes, the character pixel data is generated either from an internal character matrix table
for characters 0 to 127 or from an external character matrix table for characters 128 to 255, the address
of which is held in interrupt vector 31. See 2.3.23 for additional details.

CPU registers are used as follows:

Entry:
AH = 10.
AL = Character to write.
BH = Page to write for alpha modes 0 to 3.

(Must be zero for all other modes.)
BL = In alpha modes

BL is not used.
In graphic modes

Write mode as follows:

Bit 7 = 0 for character overwrite mode.
Bit 7 = 1 for character XOR mode.
Bits 0 and 1 = required character color (for modes 4 & 5 only).

CX = Repeat Count.
Exit:

All flags and registers preserved.

The repeat count specifies the number of consecutive locations to which the character is written.

In graphics mode if bit 7 of BL is set then the data for the specified character is exclusive ORed with the
data already in the display RAM at the cursor address.

ROS Video Int 16 Function 11: Write Color Select Register.

This function writes the CGA compatible Color Select Register IRGB bits or the Palette select bits.

CPU registers are used as follows:

Entry:
AH = 11.
BH = Function select:

Zero - Set the IRGB bits (3-0) as specified by BL.
Non Zero - Set the Palette (0 or 1) as specified by BL.

Exit:
All flags and registers preserved.

Changing the palette number (BH non-zero) only has effect in modes 4 and 5 (320 pixel graphics
mode). Refer to section 1.11.3 for further details.

ROS Video Int 16 Function 12: Write a Pixel.

This function writes an individual pixel (only valid in graphics modes).

CPU registers are used as follows:

Entry:
AH = 12.
DX = Pixel Row (0 to 199)
CX = Pixel Column (0 to 639)
AL = Write Mode:

Bit 7 = 0 for character overwrite mode.
Bit 7 = 1 for character XOR mode.
Bits 0 & 1 = Character Color for 320 graphics modes.

Exit:
All flags and registers preserved.

The pixel color specified in AL should be in the range 0 to 3 in modes 4 and 5 (graphics 320 pixel
mode) and in the range 0 to 1 for mode 6 (graphics 640 pixel mode).

ROS Video Int 16 Function 13: Read a Pixel.

This function is used for reading an individual pixel (only in graphics modes).

CPU registers are used as follows:

Entry:
AH = 13.
DX = Pixel Row (0 to 199)
CX = Pixel Column (0 to 639)

Exit:
AL = Color of the specified pixel.
All flags and other registers preserved.

ROS Video Int 16 Function 14: Write in TTY Emulation Mode.

This function writes the specified character in Teletype emulation mode at the current cursor address in
the active display page.

CPU registers are used as follows:

Entry:
AH = 14.
AL = Character to write.
BL = In alpha modes

BL is not used.
In graphic modes

Write mode as follows:
Bit 7 = 0 for character overwrite mode.
Bit 7 = 1 for character XOR mode.
Bits 0 and 1 = required character color (for modes 4 & 5 only).

Exit:
All flags and registers preserved.

Upon completion of the write the cursor column is incremented by one. If the column address is greater
than the line length then the column address is set to zero and the cursor row address is incremented
by one.

If the incremented row address is greater than the last visible line then it is decremented to its original
value and the entire page is scrolled up one line. In alpha modes the line added to the bottom of the
page is cleared to spaces with the attributes the same as the first character in previous line. In graphic
modes the bottom line is cleared to zeroes.

The following display characters are executed rather than displayed symbolically:

BEL (07h)
Sounds a short (bleep) tone on the speaker.

BS (08h)
Decrements the cursor column one character position unless the column is already zero in which
case it is ignored.

CR (0Dh)
Sets the cursor column address to zero.

LF (0Ah)

Increments the cursor row address by one and follows the scroll up procedure as detailed in the
paragraph above.

All other control characters are displayed.

ROS Video Int 16 Function 15: Get Current Video Parameters.

This function returns the current Video Mode, the current display page and number of visible columns.

CPU registers are used as follows:

Entry:
AH = 15.

Exit:
BH = Current active display Page (or zero if in graphics modes or alpha mode 7).
AH = Number of visible columns (40 or 80).
AL = Current video mode (0 to 7).

All flags and other registers preserved.

2.3.8 IGA BIOS Interrupt 16: 'EGA Compatible' Video I/O (int 10h).

The IGA BIOS interrupt 16 service routine provides an extended set of service routines similar in many
respects to those in the ROS ROM but with extra function selections to support the enhancements in the
graphics hardware environment.

It is important to note that this interrupt entry point is active for 'EGA Compatible' display modes and that
there are some differences in the standard call parameters. It is therefore important to use the correct
section when reference is made to video interrupt 16. The CGA and MDA or Hercules Monochrome
emulation mode compatible calls are covered in section 2.3.7. It should be noted that the Int 16 call
registers are much the same for the video mode calls and video character display. When the 'EGA
compatible' display modes are entered either as a result of the sw5 setting (OFF) or by the DISPLAY
utility program, the video int 16 vector (at 0:40h) is set to point to the IGA BIOS's video interrupt's entry
point and this set of service routines becomes active. Additional hardware setups must also be
performed in the IGA to support the EGA compatibility.

CPU registers for 'EGA Compatible' Video Int 16 are used as follows:

Entry:
AH = Function Selector as follows:

0 - Set Video Mode.
1 - Set Cursor Size.
2 - Set Cursor Address.
3 - Get Cursor Address.
4 - Get Light Pen Address.
5 - Set Display Page.
6 - Scroll Screen Up.
7 - Scroll Screen Down.
8 - Read Character and Attributes.
9 - Write Character and Attributes.
10 - Write Character only.

11 - Write Color Palette.
12 - Write Pixel.
13 - Read Pixel.
14 - Write Character in Teletype Emulation mode.
15 - Get Video Parameters.
16 - Set Palette Register Value.
17 - Load Character Generator.
18 - Return EGC State/Set PrtSc Vector.
19 - Write String.

All other registers as required by the function.

Exit:

If selector is greater than 19 then the call is rejected and has no effect.

All flags preserved and registers as specified by the selected function.

In general parameters passed to these routines are not checked and care should be taken when
choosing unusual parameters as unexpected results may occur.

IGA Video Int 16 Function 0: Set Video Mode.

CPU registers are used as follows:

Entry:
AH = 0
AL = Mode Selector as follows:

0 - Alpha 25 Rows by 40 Columns B/W.
1 - Alpha 25 Rows by 40 Columns Color.
2 - Alpha 25 Rows by 80 Columns B/W.
3 - Alpha 25 Rows by 80 Columns Color.
4 - Graphics 320 pixels by 200 lines using palette 1.
5 - Graphics 320 pixels by 200 lines using palette 2.
6 - Graphics 640 pixels by 200 lines, 2 colors.
7 - Alpha 25 Rows by 80 Columns in Monochrome.
13 - Graphics 320 pixels by 200 lines, 16 colors.
14 - Graphics 640 pixels by 200 lines, 16 colors.
15 - Graphics 640 pixels by 350 lines, Monochrome.
16 - Graphics 640 pixels by 350 lines, 16/64 colors.

Exit:
All flags and registers preserved.

The major difference between the 'B W' and 'Color' designations in the mode 0 - 3 selections is not the
displayable colors but that there is a 'flicker wait' incorporated into the color modes to eliminate a
'snowing' effect in certain devices. In actual fact the IGA BIOS Int 16 can drive a CGA card device when it
is the secondary display (refer to 1.22 - Switch Settings).

If the default display mode indicates monochrome a display , then mode 7 is selected regardless of the
mode in AL unless AL = 15d in which case monochrome 640x350 graphics is selected.

Modes 0 - 7 are the 'Compatible' modes and modes 13 - 16 are for extended mode support. The gap
between 8 and 12 are not user selectable display modes some of which are internal modes used for
RAM font loading.

IGA Video Int 16 Function 1: Set Cursor Size.

This function is only relevant in alpha modes as the cursor is not supported in graphics modes. It sets
the CRTC cursor start and cursor end values.

CPU registers are used as follows:

Entry:
AH = 1
CH = Starting scan of cursor.
CL = Ending scan of cursor.

Exit:
All flags and registers preserved.

Values greater between 32 and 64 turn the cursor off. Setting cursor start greater than cursor end
usually turns the cursor off and other combinations give strange cursors.

IGA Video Int 16 Function 2: Set Cursor Address.

This function sets the current row and column addresses of the cursor in the specified page.

CPU registers are used as follows:

Entry:
AH = 2
BH = Page number.
DH = Cursor Row Address.
DL = Cursor Column Address.

Exit:
All flags and registers preserved.

Refer to table 1.11.2.5 for valid page numbers and page starting address details.

IGA Video Int 16 Function 3: Get Cursor Address.

This function returns the current row and column address of the cursor in the specified page.

CPU registers are used as follows:

Entry:
AH = 3
BH = Page number.

Exit:
DH = Cursor Row Address.
DL = Cursor Column Address.
CH = Starting scan of cursor.
CL = Ending scan of cursor.

All flags and other registers preserved.

Refer to table 1.11.2.5 for valid page numbers and page starting address details.

IGA Video Int 16 Function 4: Get Light Pen Address.

This function returns the address of the light pen.

CPU registers are used as follows:

Entry:
AH = 4.

Exit:
If Light Pen switch set then

AH = 1.
DH = Character Row address (0 to 24).
DL = Character Column address (0 to 79).
CH = Pixel Row address (0 to 199) for modes 0 - 7.
CL corrupt if modes 0-7.
CX = Pixel Row address (0 to 349) for modes 13 - 16.
BX = Pixel Column address (0 to 639).

If Light Pen switch clear then
AH = 1.
BX, CH & DX preserved.

Always
All flags and other registers preserved.

IGA Video Int 16 Function 5: Set Display Page.

This function sets the active display page.

CPU registers are used as follows:

Entry:
AH = 5.
BH = Page number to be selected.

Exit:
All flags and registers preserved.

Pages are numbered from 0 to n-1, where 'n' is the number of pages available. Refer to table 1.11.2.5
for valid page numbers and page addressing details.

IGA Video Int 16 Function 6: Scroll Screen Up.

This function scrolls the active display page, or part of the active display page up a specified number of
lines.

CPU registers are used as follows:

Entry:
AH = 6.

DH = Bottom Row of area to scroll.
DL = Right most Column of area to scroll.
CH = Top Row of area to scroll.
CL = Left most Column of area to scroll
BH = Attributes for blank lines scrolled onto the bottom of the scroll area.
AL = Number of lines to roll up.

If AL = 0 then blank the specified area.
If AL not zero then roll specified area up by the number of lines in AL.
If DH = CH then AL must be zero.

Exit:
All registers and flags preserved.

Scrolling always takes effect on the current active display page.

Hardware scrolling is not supported. Scrolling is achieved by copying areas of Video RAM.

In graphics modes blank lines are filled with zeros to display the current background colour.

IGA Video Int 16 Function 7: Scroll Screen down.

This function scrolls the active display page, or part of the active display page down a specified number
of lines.

CPU registers are used as follows:

Entry:
AH = 7.
DH = Bottom Row of area to scroll.
DL = Right most Column of area to scroll.
CH = Top Row of area to scroll.
CL = Left most Column of area to scroll
BH = Attributes for blank lines scrolled onto the top of the scroll area.
AL = Number of lines to roll down.

If AL = 0 then blank the specified area.
If AL not zero then roll specified area down by the number of lines in AL.
If DH = CH then AL must be zero.

Exit:
All flags and registers preserved.

Scrolling always takes effect on the current active display page.

Hardware scrolling is not supported. Scrolling is achieved by copying areas of Video Display RAM.

IGA Video Int 16 Function 8: Read Character and Attributes.

This function reads the character and its associated attribute byte at the current cursor address in a
specified display page.

In graphics modes, the character pixel data is generated either from an internal character matrix table
for characters 0 to 127 or from an external character matrix table for characters 128 to 255, the address
of which is held in interrupt vector 31. See 2.3.23 for additional details.

CPU registers are used as follows:

Entry:
AH = 8.
BH = Page to read.

Exit:
AL = Character. (0 if no match found in Graphics Modes).
AH = Attributes byte. (Unchanged in graphics modes).
All flags and registers preserved.

Refer to 1.11.1 and 1.11.2 for the definition of the character attributes bytes.

Refer to table 1.11.2.5 for valid page numbers and page starting address details.

IGA Video Int 16 Function 9: Write Character Attributes.

This function writes a character (or a block of the same character) and its associated attribute byte to
the current cursor position in a specified display page.

In 'CGA compatible' graphics modes (3 - 5), the character pixel data is generated either from an internal
character matrix table for characters 0 to 127 or from an external character matrix table for characters
128 to 255, the address of which is held in interrupt vector 31. See 2.3.23 for additional details.

For the extended 'EGA compatible' modes (13 - 16) the full 256 character matrix is pointed to by interrupt
vector 67 (at address 10Ch). This vector is initialised by the IGA ROM BIOS during Power-On Self
Testing and points to a set of ROM character sets in the C2000-C7FFF address range.

CPU registers are used as follows:

Entry:
AH = 9.
AL = Character to write.
CX = Repeat Count.
BH = Page to write.
BL = In alpha modes

Attributes of character.
In graphic modes

Write mode as follows:
Bit 7 = 0 for character overwrite mode.
Bit 7 = 1 for character XOR mode.
Bits 0 to 3 = Character color.

Exit:
All flags and registers preserved.

The repeat count specifies the number of consecutive locations to which the character and attributes
are written. In graphics modes all characters must fit on the current line.

In graphics mode if bit 7 of BL is set then the data for the specified character is exclusive ORed with the
data already in the display RAM at the cursor address.

The character color specified in BL should be in the range 0 to 3 in 320 x 200 graphics modes, in the
range 0 to 1 for mode 640 wide B/W graphics modes, and in the range 0 to 15 for 640 wide 16 color

graphics modes.

IGA Video Int 16 Function 10: Write Character Only.

This function writes a character (or a block of the same character) to the current cursor position in a
specified display page. In alpha modes the attribute bytes for all characters written remains unchanged.

See graphics character vector details in function 9 (Write Char/Attribute) above.

CPU registers are used as follows:

Entry:
AH = 10.
AL = Character to write.
CX = Repeat Count.
BH = Page to write.
BL = In alpha modes

BL is not used.
In graphic modes

Write mode as follows:
Bit 7 = 0 for character overwrite mode.
Bit 7 = 1 for character XOR mode.
Bits 0 to 3 = Character color.

Exit:
All flags and registers preserved.

The repeat count specifies the number of consecutive locations to which the character is written.

In graphics mode if bit 7 of BL is set then the data for the specified character is exclusive ORed with the
data already in the display RAM at the cursor address.

The character color specified in BL should be in the range 0 to 3 in 320 x 200 graphics modes, in the
range 0 to 1 for mode 640 wide B/W graphics modes, and in the range 0 to 15 for 640 wide 16 color
graphics modes.

IGA Video Int 16 Function 11: Write Color Palette.

This function writes the CGA compatible Color Palette.

CPU registers are used as follows:

Entry:
AH = 11).
BH = Function select:

Zero - Set background color as specified by BL.
Non Zero - Set the Palette (0 or 1) as specified by BL.

Exit:
All flags and registers preserved.

The palette number setting (BH non-zero) only applies to 320 x 200 graphics mode. Refer to section
1.11.2 for hardware details.

IGA Video Int 16 Function 12: Write a Pixel.

This function writes an individual pixel (only valid in graphics modes).

CPU registers are used as follows:

Entry:
AH = 12.
DX = Pixel Row.
CX = Pixel Column.
AL = Write Mode:

Bit 7 = 0 for character overwrite mode.
Bit 7 = 1 for character XOR mode.
Bits 0 to 3 = Pixel Data.

Exit:
All flags and registers preserved.

The pixel data specified in AL should be in the range 0 to 3 in 320 x 200 graphics modes, in the range 0
to 1 for mode 640 wide B/W graphics modes, and in the range 0 to 15 for 640 wide 16 color graphics
modes.

IGA Video Int 16 Function 13: Read a Pixel.

This function is used for reading an individual pixel (only in graphics modes).

CPU registers are used as follows:

Entry:
AH = 13 (0Dh).
DX = Pixel Row.
CX = Pixel Column.

Exit:
AL = Specified pixel's color.
All flags and other registers preserved.

The specified pixel's color will be the same as the pixel data written by function 12 above.

IGA Video Int 16 Function 14: Write in TTY Emulation Mode.

This function writes the specified character in Teletype emulation mode at the current cursor address in
the active display page.

CPU registers are used as follows:

Entry:
AH = 14.
AL = Character to write.
BL = In alpha modes

BL is not used.
In graphic modes

Write mode as follows:

Bit 7 = 0 for character overwrite mode.
Bit 7 = 1 for character XOR mode.
Bits 0 to 3 = Character color.

Exit:
All flags and registers preserved.

The character color bits are the same as for the write character (function 10) above.

Upon completion of the write the cursor column is incremented by one. If the column address is greater
than the line length then the column address is set to zero and the cursor row address is incremented
by one.

If the incremented row address is greater than the last visible line then it is decremented to its original
value and the entire page is scrolled up one line. In alpha modes the line added to the bottom of the
page is cleared to spaces with the attributes the same as the first character in previous line. In graphic
modes the bottom line is cleared to zeroes.

The following display characters are executed rather than displayed symbolically:

BEL (07h)
Sounds a short (bleep) tone on the speaker.

BS (08h)
Decrements the cursor column one character position unless the column is already zero in which
case it is ignored.

CR (0Dh)
Sets the cursor column address to zero.

LF (0Ah)
Increments the cursor row address by one and follows the scroll up procedure as detailed in the
paragraph above.

All other control characters are displayed.

IGA Video Int 16 Function 15: Get Current Video Parameters.

This function returns the current Video Mode, the current display page and number of visible columns.

CPU registers are used as follows:

Entry:
AH = 15.

Exit:
AH = Number of visible columns (40 or 80).
AL = Current video mode).
BH = Active Display Page Number.

All flags and other registers preserved.

IGA Video Int 16 Function 16: Set Palette Register(s).

This function enables setting individual Palette registers, the Hi-Res Border (overscan) register, all
Palette registers at once or setting the Intensity/Blink mode bit.

CPU registers are used as follows:

Entry:
AH = 16.
AL = Sub-Function Selector as follows:

0 - Set Individual Palette Register.
1 - Set Hi-Res Border Register.
2 - Set All Palette Registers and Hi-Res Border Register.
3 - Set Blink/Intensity Mode Bit.

Exit:
All flags and registers preserved.

For sub-function 0:
BL = Palette register number (0 - 15).
BH = Palette Value (0 - 63).

For sub-function 1:
BH = Hi-Res Border Value (0 - 63).

For sub-function 2:
ES:DX = Pointer to a 17 byte table as follows:
0 to 15 = Palette Registers 0 to 15 Value.
16 = Hi-Res Border Value.

For sub-function 3:
BL = 1 - Enable Blink (Disable Intensified Foreground).
 0 - Disable Blink (Enable Intensified Foreground).

IGA Video Int 16 Function 17: Load Character Generator.

This function enables setting of extended character sets.

CPU registers are used as follows:

Entry:
AH = 16.
AL = Sub-Function Selector as follows:

0 - Load User Table.
1 - Load ROM 8x14 Font Block.
2 - Load ROM 8x8 Font Block.
3 - Set Character Set Select Register.
16 - Load User Table.
17 - Load ROM 8x14 Font Block.
18 - Load ROM 8x8 Font Block.
32 - Set Video 8x8 Matrix Table (Int Vect 31).
33 - Set User Extended Hi-Res Matrix Vector & Matrix Size.
34 - Set ROM 8x8 Extended Hi-Res Matrix Vector & Matrix Size.
35 - Set ROM 8x14 Extended Hi-Res Matrix Vector & Matrix Size.
48 - Return Character Set Vector.

Exit:
All flags and registers preserved (except function selector 48).

Sub functions 0 to 2 perfomr the same function as sub-functions 16 to 18 except that 0 to 2 initiate a full
mode change setup (without clearing the video RAM) and 16 - 18 reprogram the CRTC cursor
parameters based on character (points) size. These selections load a selected font table into the font

areas on planes 2 & 3. Refer to Character Set Select Register description in section 1 for the alternate
character block layouts and how they are selected using attribute bit 3.

For sub-function 0:
AL = 0. (Load User Font Table).
BL = Font Block to load (0 - 3).
DX = Starting Offset into Font Block (0 - 255 characters).
BH = Points (Bytes per Character) (1 - 31).
CX = Number of Characters to load. (1 - 256).
ES:BP = User Font Table Address Pointer.

For sub-function 1:
AL = 1. (Load ROM 8x14 Font Table).
BL = Font Block to load (0 - 3).

For sub-function 2:
AL = 2. (Load ROM 8x8 Font Table).
BL = Font Block to load (0 - 3).

For sub-function 3:
AL = 3. (Set Character Set Select Register).
BL = 4-bit Character Sel A/B setting.

Refer to the Character Set Select Register description in section 1 for the details concerning character
selects A & B.

For sub-function 16:
AL = 16. (Load User Font Table).

Refer to function 0 for register requirements for the user font table. As stated earlier, this sub-function
differs from its counterpart only in that the current mode setup is maintained with exception that the
CRTC cursor is set up based on the current character height (points) selection. This sub-function and
the following two sub-functions should be executed immediately following a mode change and the
resultant CRTC reprogramming should be fairly close to the original settings else unexpected results
may occur.

For sub-function 17:
AL = 17. (Load ROM 8x14 Font Table).
BL = Font Block to load (0 - 3).

For sub-function 2:
AL = 18. (Load ROM 8x8 Font Table).
BL = Font Block to load (0 - 3).

Refer to section 1.11.3 for the Character Set Select Register layout.

For sub-function 32:
AL = 32. (Set Video 8x8 Matrix Table).
ES:BP = User Graphics Font Address Pointer for characters
128 to 255. See 2.3.22 - Video Matrix Table.

For sub-function 33:
AL = 33. (Set User Hi-Res Graphics Characters Vector).
ES:BP = User Graphics Font Address Pointer for characters
CX = Bytes per Character. (1 - 31)
BL = 0 - Rows is specified by DL.

 1 - 14 Rows.
 2 - 25 Rows.
 3 - 43 Rows.

This font table is used to form the characters written to the screen if the current Video Mode is one of the
Extended Hi-Res graphics Modes.

The current value of Rows (-1) is stored in system storage location 0:484 and the bytes per character
value (Points) is system storage location 0:485. The int 67 vector pointer is system vector location
0:10C.

For sub-function 48:
AL = 48. (Return Character Set Vector).
BH = 0 - Return vector 31 (User 8x8 upper 128 vector).
 1 - Return vector 67 (Extended Hi-Res 256 vector).
 2 - Return 8x14 ROM font address.
 3 - Return 8x8 ROM font address.
 4 - Return upper 128 origin of 8x8 ROM font address.
 5 - Return 9x14 ROM font address.

Upon return from sub-function 48:
CX = Bytes Per Character (Points from 0:485).
DL = ROWS - 1 (from 0:484)
ES:BP = Requested Vector.

The 9x14 table is in the form of a 'fixup' table whereby the first byte is the character number requiring the
9x14 fixup followed by 14 bytes of character redefinition. The table is zero terminated.

IGA Video Int 16 Function 18: Return EGC state/Set PrtSc Vector.

This function either returns the current EGC status or selects the IGA BIOS's alternate print screen
routine address to be stored in the PrtSc vector (5) location.

CPU registers are used as follows:

Entry:
AH = 18.
BL = 16 - Return EGC Status.
 32 - Set PrtSc Vector to the IGA ROM BIOS print screen entry.

Exit:
If return EGC status then registers returned as follows:
BH = 0 - Color Mode Set.
 1 - Monochrome Mode Set.
BL = Number of 64Kb Video RAM Blcoks less one j '3' (PC1640 has 256Kb Video RAM installed)
CL = Switch (1 to 4) states (inverted - from 0:488)
CH = Features (0Fh - Features connector not installed on PC1640).

All flags and other registers preserved.

If Set PrtSc then all flags and registers are preserved.

IGA Video Int 16 Function 19: Write String.

This function writes a string to video RAM at a specified cursor position in a specified display page. The
supplied string can either consist of characters by themselves (in which case the attribute byte is
supplied in BL) or character and attribute byte pairs. Control characters are executed as described in
IGA Video Int 16 Function 14 and where they occur they are not associated with an attribute byte within
the supplied string. Line wraps occur at the display width specified in the system variable ROWS (at
0:488).

CPU registers are used as follows:

Entry:
AH = 19.
AL = String Function Selector as follows:
0

- String consists of characters only and attribute in BL.
The Cursor stays at the position prior to the string write.

1
- String consists of characters only and attribute in BL.
The Cursor is updated to be the character after the string.

2
- String consists of character and attribute pairs.
The Cursor stays at the position prior to the string write.

3
- String consists of character and attribute pairs.
The Cursor is updated to be the character after the string.

BH = Page to Write.
DH = Cursor Row Address.
DL = Cursor Column Address.
CX = Character Count (not including attribute bytes if supplied with the string).
ES:BP = Address Pointer to the String.

Exit:
All flags and registers preserved.

2.3.9 Interrupt 17: System Configuration.

This software interrupt returns the current system configuration status as defined in RAM locations
00410 and 00411 hex (see section 2.4).

CPU registers are used as follows:

Entry:
No conditions.

Exit:
AX = System Configuration status:

Bit(s) Function

14 & 15 Number of printers (1-3).
13 Not used.
12 Set if an optional games adapter is fitted.
11 Always zero.

Bit(s) Function

9 & 10 Number of serial interfaces (1 or 2).
8 Not used.
7 Always zero.
6 Set if second floppy disk drive is fitted.
4 & 5 Default display mode (DDM).
2 & 3 Always set.
1 Set if 8087 NDP is installed.
0 Always set.

All flags and other registers preserved.

Section 1.8.2 (Port A - Status-1 Input) contains the default mode states as defined in the DDM1 and
DDM0 bits.

2.3.10 Interrupt 18: Memory Size.

This software interrupt returns the system RAM size as held in system locations 00413 and 00414 hex.

CPU registers are used as follows:

Entry:
No conditions.

Exit:
AX = Number of 1K memory blocks fitted.
All flags and other registers preserved.

2.3.11 Interrupt 19: Disk I/O

This software interrupt provides disk read, write, verify, and format functions for the drives fitted to the
standard floppy disk controller.

In actual practice by the time the MS-DOS operating system has been loaded and an applications
program is activated, the DOS startup process will have saved the ROS's interrupt vector (from location
0:4Ch) and installed its own entry vector. DOS does this so that it can correct for such conditions as
DMA over a 64K segment boundary and it will break this sort of I/O requrest into a number of smaller I/O
requests. In addition any installed hard disk will have 'chained' itself into the interrupt 19 vector so that
requests with the MSB of the drive number set can be serviced by its ROM based hard disk I/O routines
(usually in the C8000h address range). In general the call parameters for the hard disks are the same
as those described here for read and write, however there are a number of additional services provided
by the hard disk BIOS ROM's. The hard disk error return codes are also somewhat extended to the
floppy disk group documented here. The typical 'compatible' hard disk function selector list and errors
are documentedd following the ROS's functions.

CPU registers are used as follows:

Entry:
AH = Disk I/O Function selector:

0 - Initialise the disk sub-system.
1 - Return the status of the last operation.

2 - Read a number of consecutive sectors.
3 - Write a number of consecutive sectors.
4 - Verify a number of consecutive sectors.
5 - Format a track.

Exit:
AH = Status Byte:

0 - Operation completed successfully.
1 - Incorrect function (or drive) specifier.
2 - Missing address mark error.
3 - Disk write protected (Write or Format commands only).
4 - Record not found.
8 - DMA overrun error.
9 - Attempted DMA over a 64K segment boundary.
16 - CRC error.
32 - Floppy disk controller error.
64 - Seek error.
128 - Floppy disk controller timeout (Drive Not Ready).

All other registers as specified by the selected function.

For all disk functions the Carry Flag (CY) will be clear if no error else it is set if an error (and AH = error
number). All other flags are corrupt.

Disk Function 0: Initalise Disk Sub-System.

This function performs a total initialisation of the disk interface as follows:

1. Reset the FDC (Floppy Disk Controller).
2. Re-configure the FDC parameters to those specified in the disk parameter table (see interrupt

30).

CPU registers are used as follows:

Entry:
AH = 0.

Exit:
AH/Flags = Status as specified above.
All registers preserved.

When an error is returned by any other Diskette I/O function, the Initialise Disk function should be called
prior to the next disk I/O operation.

Disk Function 1: Return Last Status.

This function returns the status byte and Carry Bit of the last disk I/O operation.

CPU registers are used as follows:

Entry:
AH = 1.

Exit:

AH/Flags = Status of last disk I/O as specified above.
All other registers preserved.

Disk Function 2: Read Sector.

This function reads a number of consecutive sectors. All sectors to be read must be on the same track.

CPU registers are used as follows:

Entry:
AH = 2.
DH = Head Number (0 or 1).
DL = Drive Number (0 or 1).
CH = Track Number.
CL = Starting Sector Number.
BX = Offset Address of Read Data Buffer.
ES = Segment Address of Read Data Buffer.
AL = Number of Sectors to Read.

Exit:
AH/Flags = Status as specified above.
AL = Number of Sectors successfully read.

(Corrupt if Timeout error.)
All other registers preserved.

Disk Function 3: Write Sector.

This function writes a number of consecutive sectors. All sectors to be written must be on the same
track.

CPU registers are used as follows:

Entry:
AH = 3.
DH = Head Number (0 or 1).
DL = Drive Number (0 or 1).
CH = Track Number.
CL = Starting Sector Number.
BX = Offset Address of Write Data Buffer.
ES = Segment Address of Write Data Buffer.
AL = Number of Sectors to Write.

Exit:
AH/Flags = Status as specified above.
AL = Number of Sectors successfully written.

(Corrupt if Timeout error.)
All other registers preserved.

Disk Function 4: Verify Sector.

This function verifies a number of consecutive sectors. All sectors to be verified must be on the same
track.

CPU registers are used as follows:

Entry:
AH = 4.
DH = Head Number (0 or 1).
DL = Drive Number (0 or 1).
CH = Track Number.
CL = Starting Sector Number.
AL = Number of Sectors to Verify.

Exit:
AH/Flags = Status as specified above.
AL = Number of Sectors successfully verified.

(Corrupt if Timeout error.)
All other registers preserved.

Since the verification process is halted upon the first occurrence of an error, AL represents the number
of sectors successfully verified prior to the occurrence of an error or total sectors verified if no error.

Disk Function 5: Format Track.

This function formats an entire track.

CPU registers are used as follows:

Entry:
AH = 5.
DH = Head Number (0 or 1).
DL = Drive Number (0 or 1).
CH = Track Number.
BX = Offset Address of Format Buffer.
ES = Segment Address of Format Buffer.

Exit:
AH/Flags = Status as specified above.
All other registers preserved.

The format buffer contains four bytes of information for each sector on the track:

1. Track Number.
2. Side Number.
3. Sector Number.
4. Sector Size Code:

0 - 128 bytes / Sector.
1 - 256 bytes / Sector.
2 - 512 bytes / Sector.
3 - 1024 bytes / Sector.

The gap length, filler byte and sectors per track required by the FDC Format command are obtained
from the DPT (See Disk Parameter Table - Section 2.3.22).

2.3.11.1 Hard Disk Call parameters and registers.

As explained in the beginning of the ROS's floppy disk Int 19 calls, the 'compatible' hard disk expansion
slot ROM supports a register interface similar to the floppy disk I/O but with extended functions required
for the hard disk environment. This section gives the setup registers for this 'compatible' hard disk I/O
call.

CPU registers are used as follows:

Entry:
AH = Hard Disk I/O Function selector:

0 - Reset Controller.
1 - Return the status of the last operation.
2 - Read a number of consecutive sectors.
3 - Write a number of consecutive sectors.
4 - Verify a number of consecutive sectors.
5 - Format a track.
6 - Format a track with bad sector markers.
7 - Format the entire drive.
8 - Return drive parameters.
9 - Set drive parameters.
10 - Read Long.
11 - Write Long.
12 - Seek to Track.
13 - Reset Controller (Alternate Entry).
14 - Read Sector Buffer.
15 - Write Sector Buffer.
16 - Test Drive ready.
17 - Recalibrate Seek.
18 - Ram Diagnostic.
19 - Drive Diagnostic.
20 - Controller Diagnostic.
22 - Park Heads over the landing zone.

Exit:
AH = Status Byte:

0 - Operation completed successfully.
1 - Incorrect function (or drive) specifier.
2 - Missing address mark error.
4 - Record not found.
7 - Drive initialization failure.
8 - DMA overrun error.
9 - Attempted DMA over a 64K segment boundary.
11 - Bad Track marker detected.
16 - ECC error.
17 - ECC data corrected.
32 - Hard disk controller error.
64 - Seek error.
128 - Disk controller timeout (Drive Not Ready).
187 - Undefined error occurred.
255 - Read Status Failure.

The register call parameters for the function selections are very similar to the equivalent floppy disk I/O
calls and are typically as follows:

Function Selector
AH: 0 - 20 & 22 (as per the table above)

Sector Count
AL: 1 - n. (17 Sectors / Track - typical)

Interleave Factor
AL: 1 - 16 Typically 3 to 7 (for the formatting calls)

Drive Number
DL: 80h - FFh (Drive C: is 80h, D: is 81h ... etc).

Sector Number
CL: 1 - 17 (Lower 6 bits of CL).

Head Number
DH: 0 - n (Typically 3 for 20MB drives with 4 heads).

Cylinder Number
CH: 0 - 1023 (8 LS Bits and 2 additional MS bits in the upper 2 MS bits of CL).

Buffer Address
ES:BX --> Segment:Offset value.

Exit:
AH: Return status as listed in the above table.
CF: Carry Flag Clear - No errors. (AH = 0)
Carry Flag Set - Error ccode in AH.

When Drive parameters are requested (Function 8) the return registers are as follows:

Hard disk drive count
DL. (1 to n)

Maximum Head Number
DH. (0 to n-1)

Sectors per Track
CL. (bits 0 - 5)

Maximum Cylinder Number
CH. (10 bits: 8 LSBs in CH and 2 MS bits in the 2 upper bits of CL).

Cylinders and heads are numbered starting from zero, therefore the max numbers are 'n-1'. Sectors are
numbered starting at 1 and go to n which is typically 17 for the current 'MFM' technology. Newer 'RLL'
technology drives are beginning to appear with 26 sectors per track. The maximum track number is
actually one higher than the number reported but the highest track (termed the maintenance cylinder) is
reserved for diagnostic software maintenance tests so that applications cannot use this track for
storage.

Setting bad track markers is the method used to force DOS to set its 'Bad Sector Markers' during the
logical formatting process.

Hard disk formatting is a confusing subject because there are two formatting passes necessary before
the disk is ready for usage. The first formatting required is the low level (hard) formatting process which
writes the actual sector ID fields on the media. When a hard disk is being prepared for usage by MS-
DOS it must then be partitioned (using the FDISK utility) and finally 'Logically Formatted' the using the
MS-DOS FORMAT utility. MS-DOS formatting is merely a quick once over verify process to find any areas
which are not readable and for which it will mark the unreadable blocks in the DOS File Allocation Table
(FAT). MS-DOS then installs its file directory and FATs on the disk and reports disk size and bad sector
counts. The initial hard formatting process is a factory process which must take place in a controlled

environment (temperature and etc.) and the manufacturer's media defect list is entered and bad tracks
marked. User attempts to format hard disks are fraught with difficulties usually because of the media
defect problem whereby areas which may appear readable to MS-DOS's formatter but which fail to
retain certain data patterns contained in actual data written later and these will cause 'Unrecoverable
Read Error' reports to appear and frustrate all concerned. It is generally a good idea to leave the
debugger 'g=C800:5' ROM formatter entry point to the experts.

2.3.12 Interrupt 20: Serial I/O.

This software interrupt provides functions for character I/O to one of the two serial channels and
functions for configuring the serial parameters.

Two channels are supported, logical serial device 0 (COM1:) which is always configured and logical
serial device 1 (COM2:) which is optional. Power-up initialisation determines whether serial device 1 is
installed.

CPU registers are used as follows:

Entry:
AH = Serial I/O function selector:

0 - Initialise Serial Port.
1 - Write Character to Serial Port.
2 - Read Character from Serial Port.
3 - Return status of Serial Port.

DX = Logical Channel Number (0 or 1).
All other registers as required by the specified function.

Exit:
AX = Returned Status/Character as defined by the function.
All flags and other registers preserved.

If logical channel number is out of range (greater than 1) or is not fitted then the function is abandoned
and the timeout error status (bit 7 of AH) is returned and all other bits in AX are undefined.

The Logical Serial Device Timeout Count RAM variables (locations 0047C & 0047D) specify the time out
delay (in half seconds) used for channel timeout. See section 2.4.

Serial Function 0: Initalise Port.

This function performs a complete reinitialisation of a serial channel. Setting the Baud Rate, Data Bits,
Stop Bits and Parity.

CPU registers are used as follows:

Entry:
AH = 0.
DX = Logical Channel Number (0 or 1).
AL = Hardware configuration:

Bit(s) Function

5 - 7 Baud Rate Code (0 - 7).
4 Set for Even Parity / Clear for Odd Parity.

Bit(s) Function

3 Set Parity Enable.
2 Set for 2 Stop Bits / Clear for 1 Stop Bit.
1 Always set.
0 Set for 8 Data Bits/Clear for 7 Data Bits.

Exit:
AH = 8250 Line Status register (See section 3.4).
AL = 8250 Modem Status register.
All flags and other registers preserved.

The Baud Rate code (bits 5 thru 7) is one of the following:

0 - 110 Baud.
1 - 150 Baud.
2 - 300 Baud.
3 - 600 Baud.
4 - 1200 Baud.
5 - 2400 Baud.
6 - 4800 Baud.
7 - 9600 Baud.

If the hardware flow control bit in the NVR default display mode byte is set then RTS is raised true and
DTR is set false. Otherwise the current state of the control lines is preserved.

Serial Function 1: Send Character.

This function performs a character out sequence to the selected port. The character is output when CTS
and the 8250 Tx Holding Register Empty status is also true. If the character cannot be sent within the
time specified in the logical serial device timeout count RAM variable then the command is abandoned
and AH is returned with bit 7 set.

CPU registers are used as follows:

Entry:
AH = 1.
AL = Character to be sent.
DX = Logical Channel Number (0 or 1).

Exit:
AH = 8250 Line Status register bits 0 to 6. Bit 7 is set if the channel timed out else bit 7 is clear
and the character was sent.

All flags and other registers preserved.

When this function is called, RTS is raised true.

Upon exit both the RTS and DTR control lines are left in their current state.

The Logical Serial Device Timeout Count RAM variables (locations 0:47C and 0:47D) specify the time
out delay (in half seconds) used for channel timeout.

Serial Sub-Function 2: Read Character.

This function attempts to read a character from the specified serial port. The character is not read until
both Data Ready (DR) and Data Set Ready (DSR) status bits are both true. If a character is not received
within the time specified by the logical device timeout count then the command is abandoned and
timeout status is flagged.

CPU registers are used as follows:

Entry:
AH = 2.
DX = Logical Channel Number (0 or 1).

Exit:
If character received from 8250 then
AL = Character received.
AH = Character status:

Bit(s) Meaning

7 - 5 Always '0'.
4 Break status.
3 Set if framing error.
2 Set if parity error.
1 Set if overrun error.
0 Always '0'.

If logical channel timed out then
AH = 080h (bit 7 = 1).

Always
All flags and other registers preserved.

If the character is received with no errors then AH = 0 on exit.

Upon entry, if no character is available at the serial port DTR is set in the Modem Control Register.

If logical channel number is out of range or is not fitted then the function is abandoned and the timeout
error status (bit 7 of AH) is returned and all other bits in AX are undefined.

The Logical Serial Device Timeout Count RAM variables (locations 0:47C and 0:47D) specify the time
out delay (in half seconds) used for channel timeout.

Serial Function 3: Get Channel Status.

This function returns the status of the specified logical channel.

CPU registers are used as follows:

Entry:
AH = 3.
DX = Logical Channel Number (0 or 1).

Exit:
AH = 8250 Line Status register (See section 3.4).

AL = 8250 Modem Status register.
All flags and other registers preserved.

All flags and other registers preserved.

If logical channel number is out of range or is not fitted then the function is abandoned and the timeout
error status (bit 7 of AH) is returned and all other bits in AX are undefined.

2.3.13 Interrupt 21: Enhanced Function Interrupt.

This software interrupt provides access to the enhanced hardware features of the AMSTRAD PC1640.

CPU registers are used as follows:

Entry:
AH = Enhanced function Selector:

0 - Read and Reset Mouse
1 - Write NVR Location.
2 - Read NVR Location.
6 - Return ROS Version Number.

All other registers as required by specified sub-function.

Functions 3 - 5 are for PC1512 video hardware and should not be used on the PC1640.

Exit:
If sub-function number out of range then

Carry True.
All other flags corrupt.
All registers preserved.

If sub-function within range then
All flags and registers as specified by the sub-function.

Enhanced Function 0: Read/Reset Mouse X/Y Counts.

Read and reset the mouse X and Y count registers. Each register is read twice. If the data from two
consecutive reads differs then the process is repeated until two consecutive reads produce the same
data. Upon completion of the read procedure the registers are cleared to zero.

CPU registers are used as follows:

Entry:
AH = 0.

Exit:
CX = Signed X count.
DX = Signed Y count.
Carry False.
Other flags corrupt.
All other registers preserved.

Enhanced Function 1: Write NVR Location.

This sub-function writes a specified location in the Real Time Clock Non-Volatile RAM (NVR), re-
computes and stores the new checksum value. The location written is then read back and compared
with the new value and if different an error code is returned.

CPU registers are used as follows:

Entry:
AH = 1.
AL = NVR Address to be written (0 to 63).
BL = NVR Data to be written.

Exit:
AH = Return Code:

0 - NVR written successfully.
1 - NVR Address out of range.
2 - NVR Data write error.

Carry false.
All other flags corrupt.
All other registers preserved.

Although locations 0-13 may be accessed using this function, they are used by the RTC hardware and
should not be modified with this function.

Section 2.5 (Non Volatile RAM) contains the NVR information layout.

Enhanced Function 2: Read NVR Location.

This sub-function reads a specified location in the Real Time Clock Non-Volatile RAM (NVR). The
checksum is computed and compared with the actual value and if the NVR checksum is incorrect an
error code is returned.

CPU registers are used as follows:

Entry:
AH = 2.
AL = NVR Address to be read (0 to 63).

Exit:
AH = Return Code:

0 - NVR read successfully.
1 - NVR Address out of range.
2 - NVR checksum error.

AL = Byte read from NVR.
Carry false.
All other flags corrupt.
All other registers preserved.

Section 2.5 (Non Volatile RAM) contains the NVR information layout.

Enhanced Function 6: Return ROS Version Number.

This sub-function returns the two part ROS version number.

CPU registers are used as follows:

Entry:
AH = 6.

Exit:
BH = Release number.
BL = Issue Number.

Carry false.
All other flags corrupt.
All other registers preserved.

The Release Number is incremented only when the interface to the ROS is changed. The Issue
Number is incremented for each version of a particular release. A new release always starts with issue
number zero.

Note that this function call can be used to detect whether a program is running on an Amstrad PC. Prior
to entry clear the carry flag and set BX to zero. Upon return if carry is set or BX is zero then the program
is not running in an Amstrad PC. An additional hardware check (in the printer control port - Section
Section 1.10.2) can be used to sort out whether the Amstrad PC is a PC1512 or a PC1640.

2.3.14 Interrupt 22: Keyboard I/O.

This software interrupt provides access to the keyboard buffer and the current toggle status.

CPU registers are used as follows:

Entry:
AH = Keyboard I/O function selector.

0 - Get key token from the keyboard buffer.
1 - Return keyboard buffer status.
2 - Return current key toggle and key States.

Exit:
If function selector out of range then

AH = AH - 2.
If function within range then

All flags and registers as specified by function.

Keyboard I/O Function 0: Get Key Token.

Return the next token from the key token buffer. If no key token is available then wait until a key token is
available.

CPU registers are used as follows:

Entry:
AH = 0.

Exit:
AX = Key Token.
All flags and other registers preserved.

Keyboard I/O Function 1: Return Keyboard Buffer Status.

Test whether the key token buffer is empty. If it is not empty return the next key token to be taken out of
the buffer without removing it from the buffer.

CPU registers are used as follows:

Entry:
AH = 1.

Exit:
If key token buffer is empty then

Zero flag true.
AX corrupt.

If one or more tokens in buffer then
Zero flag false.
AX = next key token to be removed from buffer.

Always
Interrupts enabled.
All other flags corrupt.
All other registers preserved.

Keyboard I/O Function 2: Return Shift States.

Return the current value of the shift states (from 00417h).

CPU registers are used as follows:

Entry:
AH = 2.

Exit:
AL = Current shift states:

Bit(s) Function (Set if key active)

7 INS
6 CAPS LOCK
5 NUM LOCK
4 SCROLL LOCK
3 ALT
2 CTRL
1 LEFT SHIFT
0 RIGHT SHIFT

All flags and other registers preserved.

2.3.15 Interrupt 23: Printer I/O.

This software interrupt provides access to the three printer channels.

CPU registers are used as follows:

Entry:
AH = Printer I/O Function selector:

0 - Send character to printer port.
1 - Initialise printer port.
2 - Return printer port status.

DX = Logical Channel Number (0 - 2).
Other registers as specified by function.

Exit:
AH = Printer Port Status (Bits 1 - 7):

Bit(s) Function (Bit Set True)

7 Printer Idle.
6 Printer Acknowledge
5 Paper Out.
4 Printer Selected.
3 I/O Error.
1 & 2 Always Zero.
0 Zero if I/O successful or set if Timeout. (see Printer functions).

All flags and other registers preserved.

Three logical channels are supported. Logical printer device 0 is the system port and is standard to all
machines. The power-up initialisation sequence determines if additional external printer ports are
present. When both additional printer interfaces are present, device 1 is the external printer port and
device 2 is the printer port on the external monochrome VDU controller. If only one additional printer
interface is present it is always logical device 1.

Locations 0478h - 047Ah contain the Logical Printer Device timeout counts (see section 2.4).

Printer Function 0: Print Character.

This function attempts to output a character to the specified printer port. If the character cannot be sent
within the time specified by the logical printer timout count RAM variable then the command is
abandoned and AH is returned with bit 0 set.

CPU registers are used as follows:

Entry:
AH = 0.
AL = Character to be printed.
DX = Logical Channel Number (0 - 2).

Exit:
AH = Printer Port status (as given above) or Timeout (Bit 0) set.
All flags and other registers preserved.

Printer Function 1: Initialise Printer Channel.

This function performs a complete reinitialisation of a specified printer channel (if present). The printer
INIT signal is held low for approximately 4 milliseconds. Printer interrupts and auto linefeed are
disabled.

CPU registers are used as follows:

Entry:
AH = 1.
DX = Logical Channel Number (0 - 2).

Exit:
AH = Printer Port status (as given above) or Invalid Channel (Bit 0) set.
All flags and other registers preserved.

Printer Function 2: Return Channel Status.

This function returns the status register of the specified logical printer channel (if present).

CPU registers are used as follows:

Entry:
AH = 2.
DX = Logical Channel Number (0 - 2).

Exit:
AH = Printer Port status (as given above) or Invalid Channel (Bit 0) set.
All flags and other registers preserved.

2.3.16 Interrupt 24: System Restart.

If a Hard Disk ROM BIOS was initialized during Power-Up Initialization then it will have installed its entry
point into this vector and saved the ROS's vector in its private storage area. Its bootstrap process
resembles the process described below (under Int 25) and if successful the system from the active
partition of the hard disk will be loaded if not then it executes the ROS's Int 24 whose vector it has
saved.

This software interrupt is intended to provide an orderly system restart capability. A message is
displayed on the active VDU requesting that the user 1Insert a SYSTEM disk into Drive A1 and 1Then
press any key.1 When the keypress is received, the Disk Bootstrap process (Interrupt 25) is invoked.

CPU registers are used as follows:

Entry:
No conditions.

Exit:
Disk Bootstrap.

2.3.17 Interrupt 25: Disk Bootstrap.

This software interrupt to provide access to the disk bootstrap process which is normally executed after
power-up initialisation tests.

The ROS attempts to load the bootstrap sector (from drive A, side 0, track 0, sector 1) into memory at
07C00h. If the bootstrap sector is loaded successfully it is given control (far jump to segment 0000
offset 7C00). If the bootstrap sector cannot be loaded after 10 retries, the ROS will display a message
prompting the user to "Insert a SYSTEM disk into drive A" and "Then press any key." The ROS then waits
for the keypress and repeats the system restart procedure (Int 24).

Useage of this interrupt under MS-DOS 3.2 may fail if there has been any process installed in memory
which has connected itself to any active interrupt chains such as the System Clock (ticker) interrupt. The
ROS performs the bootstrap without initialising the interrupt vectors and if a process has become
resident under MS-DOS it will be removed during the bootstrap process, however the next occurrence of
an interrupt will give control to the address of the formerly resident process and as a result the system
hangs because the processor is executing random code. Programs such as MOUSE.COM are of this
category of resident timer-chained process.

CPU registers are used as follows:

Entry:
No conditions.

Exit:
To program loaded by Disk Bootstrap.

2.3.18 Interrupt 26: System Clock & Real Time Clock.

This software interrupt routine provides access to both the system (software maintained) clock location
as well the Real Time Clock (RTC) hardware.

CPU registers are used as follows:

Entry:
AH = Clock Function specifier:

0 - Get System Clock.
1 - Set System Clock.
2 - Get RTC time.
3 - Set RTC time.
4 - Get RTC date.
5 - Set RTC date.
6 - Set RTC alarm.
7 - Reset RTC alarm.

All other registers as required by function.
Exit:

All registers as specified by function.

Clock Function 0: Get System Clock.

This function returns the current value of the 32 bit system clock value.

CPU registers are used as follows:

Entry:
AH = 0.

Exit:
DX = Least Significant Word of the clock count.
CX = Most Significant Word of the clock count.
AL = 24 Hour Flag:

0 if not past 24 hours.
1 if past 24 hours.

All flags and other registers preserved.

The 32 but system clock is incremented every 54.9 milliseconds by the ticker hardware interrupt routine.
When the count reaches the 24 hour value (0001800B0h) the 24 Hour flag is set and the system clock
count is reset to zero. This 24 hour count is based on the system clock 1.19318 MHz divided by the
maximum divisor, 65536. This gives an interrupt rate of 54.92549323 Ms which when divided into the
number of seconds in 24 hours gives this 24 Hour time value above.

Note that the 24 hour flag is reset to zero after it has been read.

Clock Function 1: Set System Clock.

This function sets the current value of the 32 bit system clock value.

CPU registers are used as follows:

Entry:
AH = 1.
DX = Least Significant Word of the clock count.
CX = Most Significant Word of the clock count.

Exit:
All flags and other registers preserved.

Clock Function 2: Get RTC Time.

This function gets the current time from the Real Time Clock.

CPU registers are used as follows:

Entry:
AH = 2.

Exit:
If RTC not operating then

Carry True.
CX DX preserved.

If RTC operating then
Carry False.
CH = Hour (BCD).
CL = Minute (BCD).
DH = Second (BCD).

Always
All other flags corrupt.
All other registers preserved.

Clock Sub-Function 3: Set RTC Time.

This function sets the Real Time Clock time.

CPU registers are used as follows:

Entry:

AH = 3.
CH = Hour (BCD).
CL = Minute (BCD).
DH = Second (BCD).
DL = 1 to enable daylight savings option (otherwise 0).

Exit:
If RTC not operating then

Carry True.
If RTC operating then

Carry False.
Always

All other flags corrupt.
All other registers preserved.

When the daylight savings option is set it enables two special updates of the current time. On the last
Sunday in April, the time increments from 1:59:59 AM to 3:00:00 AM. Also on the last Sunday in October
the time increments from 1:59:59 AM to 1:00:00 AM.

Note that this option also disables the alarm function.

Clock Function 4: Get RTC Date.

This function gets the current date from the Real Time Clock.

CPU registers are used as follows:

Entry:
AH = 4.

Exit:
If RTC not operating then

Carry True.
CX DX preserved.

If RTC operating then
Carry False.
CH = Century (BCD).
CL = Year (BCD).
DH = Month (BCD).
DL = Day Of Month (BCD).

Always
All other flags corrupt.
All other registers preserved.

The century byte is set to 19 (BCD) if the year is 80 (BCD) or above otherwise it is set to 20 (BCD).

Clock Function 5: Set RTC Date.

This function sets the Real Time Clock time.

CPU registers are used as follows:

Entry:

AH = 5.
CH = Century (BCD) [Ignored].
CL = Year (BCD).
DH = Month (BCD).
DL = Day of Month (BCD).

Exit:
If RTC not operating then

Carry True.
If RTC operating then

Carry False.
Always

All other flags corrupt.
All other registers preserved.

Century is ignored and is computed as described in Clock Function 4.

Clock Function 6: Set RTC Alarm.

This function sets the alarm time and arms the Real Time Clock alarm interrupt. The alarm interrupt will
occur then the current time matches the alarm time. An application program which uses this function
must first write the address of its alarm interrupt routine into interrupt vector 10.

CPU registers are used as follows:

Entry:
AH = 6.
CH = Hour (BCD).
CL = Minute (BCD).
DH = Second (BCD).

Exit:
If RTC alarm already set then

Carry True.
If RTC alarm not already set then

Carry False.
Always

All other flags corrupt.
All other registers preserved.

Clock Function 7: Kill RTC Alarm.

This function disarms the Real Time Clock alarm function.

CPU registers are used as follows:

Entry:
AH = 7.

Exit:
All flags and registers preserved.

2.3.19 Interrupt 27: Keyboard Break Interrupt.

This software interrupt is invoked by the keyboard hardware interrupt routine when a keyboard break
([CTRL] + [NUM LOCK]) is detected.

The power-up initialisation process loads the address of a dummy break handler routine which does
an interrupt return (IRET) instruction.

Application programs which supply a keyboard break interrupt must conform to the following register
conventions:

Entry:
DS = 0040h (Spanning the ROS data).

Exit:
All registers must be preserved except AX, BX, CX, DX, DS and Flags which may be corrupt.

The supplied interrupt routine must not invoke any other ROS interrupts from within itself but may modify
any of the system RAM locations used by the ROS.

2.3.20 Interrupt 28: External Ticker Interrupt.

This software interrupt is called from within the System Clock hardware interrupt routine. It is initialised
by power-up with a dummy handler which returns from interrupt by doing an IRET instruction. It can be
used by application programs which require a process to be run at a regular interval.

Application programs which supply an external ticker interrupt must conform to the following register
conventions:

Entry:
DS = 0040h (Spanning the ROS data).

Exit:
All registers must be preserved except AX, DX, DS and Flags which may be corrupt.

The supplied interrupt routine must not invoke any other ROS interrupts from within itself but may modify
any of the system RAM locations used by the ROS.

2.3.21 Interrupt 29: VDU Parameter Table.

This interrupt vector location contains the 20-bit address of the Video Parameter table used in setting
up the 6845 CRTC when changing video mode. Upon power-up or after a reset, the system ROS
initialisation process loads the ROM table address into this vector location (0074-0077 hex).

The Video Parameter table consists of four consecutive 16 byte entries. Each entry contains an
initialisation quantity for each of the MC6845 CRTC registers (See section 1.11.5). When a new video
mode is selected the table entry used for initialisation as follows:

Table Entry VDU Mode

0 0 - Alpha 25 by 40 Chars.
1 - Alpha 25 by 40 Chars.

1 2 - Alpha 25 by 80 Chars.
3 - Alpha 25 by 80 Chars.

2 4 - Graphics 320 by 200 Pixels, palettes 0 or 1.
5 - Graphics 320 by 200 Pixels, palette 2.

Table Entry VDU Mode

6 - Graphics 640 by 200 Pixels.

3 7 - Alpha 25 by 80 chars using monochrome adapter.

The table contains the following initialisation data:

Register Number Function Entry 0 Entry 1 Entry 2 Entry 3

R0 Horizontal Total 56 113 56 97
R1 Horizontal Displayed 40 80 40 80
R2 Horiz. Sync Position 45 90 45 82
R3 Horiz. Sync Width 10 10 10 15
R4 Vertical Total 31 31 127 25
R5 Vertical Total Adjust 06 06 06 06
R6 Vertical Displayed 25 25 100 25
R7 Vertical Sync Position 28 28 112 25
R8 Interlace 02 02 02 02
R9 Max. Raster Address 07 07 01 13
R10 Cursor Start Raster 06 06 06 11
R11 Cursor End Raster 07 07 07 12
R12 Start Address High 00 00 00 00
R13 Start Address Low 00 00 00 00
R14 Cursor Location High 00 00 00 00
R15 Cursor Location Low 00 00 00 00

2.3.22 Interrupt 30: Disk Parameter Table.

This interrupt vector location contains the 32-bit address of the parameter table of configuration
parameters for the disk interface. Upon power-up or after a reset, the initialisation process loads the
ROM table address into this vector location (0078 - 007B hex).

The Disk Parameter Table consists of 11 bytes as follows:

Byte Function Value

0 2nd byte of the disk controller specify command. (6 Ms Step Rate, Head Unload delay = 15) DFh

1
3rd byte of the disk controller specify command. (Head Load delay = 1 & FDC DMA Mode =
0)

02h

2 Motor off timeout (approx 5.4 seconds). 64h
3 Sector size selector (512 bytes) 02h
4 End of Track (sector 9) 09h
5 Gap length for Read/Write commands. 2Ah
6 DTL - Data Length FFh
7 Gap Length for format command. 50h
8 Filler byte for format command. F6h
9 Head Settling Delay (15 Ms) 0Fh
10 Motor on Delay (500 Ms) 04h

2.3.23 Interrupt 31: VDU Matrix Table.

This interrupt vector location contains the 32-bit address of the VDU matrix table used in compatible
graphics modes for generating pixel data for characters 128 to 255.

Upon power-up or after a reset, the initialisation process loads this vector (007C-007F) with all zeros to
indicate that no external VDU matrix table is loaded. Programs such as GRAFTABL.EXE load a resident
upper 128 character matrix which can be used in the 640x200 resolution graphics modes. In addition
the IGA ROM BIOS uses another vector, 67 (vector location 0:10Ch) which it initialises to point to its full
256 character ROM table. IGA Video Int 16, function 17, sub-function 48, BH=4, can be used to obtain
the upper 128 origin of its 8x8 ROM font address and this resultant value can be used to initialise
interrupt vector 31.

When the IGA extended font ROM is enabled for foreign character sets (sw9 ON) then a vector table is
available at C7FE8 (C000:7FE8) which contains 12 word size entries. The first four words are for
Danish fonts, the next four words are for Portugese and the final four words are for the Greek Fonts. The
first pointer in each of these groups is for the 8x8 high 128 character set for the national variant. By
using the offset value plus a segment value of C000h, national variant upper 128 character sets can
easily be obtained without using any disk based tables.

Each of the 128 character table entries consists of eight bytes, one for each character scan. The first
byte is the top scan value and the last byte is the button scan value. The MSB, bit 7, is the left most pixel
and the LSB, bit 0, is the right most pixel of the scan. A set bit displays the foreground colour and a reset
bit displays the background colour.

2.4 System RAM Variables.

The System RAM address space from 00300 to 00500 is used by the ROS for variable storage. The
following table lists the variables and their usage. They are either classified as Byte (8-bit), Word (16-
bit), Long Word (32-bit) or Buffer (greater than 32-bit) storage locations. Depending on the CPU's
segment register setting, the variables at 004xx can be said to be referenced at 40:XXX or 0:4XX.

Location(s) Usage

00300-003FF Initialisation Stack (Buffer).
Used as stack area only during initialisation.

00400 Logical Serial Device 0 Base I/O Address (Word).
Contains the base address of logical serial device 0.
Initally the System Asynchronous Serial port address.

00402 Logical Serial Device 1 Base I/O Address (Word).
Contains the base address of logical serial device 1.
Initally the external asynchronous serial port or zero if it is not present at initialisation.

0404 - 0407 Reserved.
00408 Logical Printer Device 0 Base I/O Address (Word).

The base address of logical printer device 0.
Initally the System Parallel Printer port.

0040A Logical Printer Device 1 Base I/O Address (Word).
The base address of logical printer device 0.
Initially the external parallel printer port if it is present else it points to the external
monochrome VDU controller if it is present. If neither is present it is initialised to zero.

0040C Logical Printer Device 2 Base I/O Address (Word).
Initially points to the external monochrome VDU controller if both the external parallel

Location(s) Usage

printer port and the external monochrome VDU controller are present. If either is not
installed initialised to zero.

0040E Reserved (Word).
00410 System Configuration Status (Word).

Contains the System Configuration as follows:

Bit(s) Function

14 & 15 Number of printers (1-3).
13 Not used.
12 Set if an optional games adapter is fitted.
11 Always zero.
9 & 10 Number of serial interfaces (1 or 2).
8 Not used.
7 Always zero.
6 Set if second floppy disk drive is fitted.
4 & 5 Default VDU mode.
2 & 3 Always set.
1 Set if 8087 NDP is installed.
0 Always set.

00412 Reserved (Byte).
00413 Total RAM Size (Word).

Initially set to the number of 1K User (System) RAM Blocks installed. (640 for PC1640).
00415 Extra RAM Size (Word).

Initially set to the number of 1K User (System) RAM Blocks installed minus 64. (576 for
PC1640).

00417 Key Toggles and Key States (Byte).
This byte is used to record the state of the Key Toggles (bits 4-7) and Key States (bits
0-3) as follows:

Bit Key (Bit set if active)

7 INS
6 CAPS LOCK
5 NUM LOCK
4 SCROLL LOCK
3 ALT
2 CTRL
1 LEFT SHIFT
0 RIGHT SHIFT

00418 Keys down (Byte).
This byte is used to record the state of the toggle keys so that they do not repeat when
the key is held down.

Bit Key (Set if down)

7 INS
6 CAPS LOCK
5 NUM LOCK
4 SCROLL LOCK

Location(s) Usage

Bit 3 is set when Pause state ([CTRL][NUM LOCK] is active. Bits 0 - 2 are unused and
initially zeroed.

00419 Absolute Key Token Number (Byte).
When an absolute key token numbered is entered via ALT and the numeric key pad, this
variable holds the current state of the token.

0041A Key Token Buffer Out Pointer (Word).
This variable holds the absolute offset to the next key token to be removed from the key
token buffer.
Note that the ROS assumes that the buffer has a segment paragraph address of 0040h.

0041C Key Token Buffer In Pointer (Word).
This variable holds the absolute offset to the next empty position in the key token buffer.
The buffer is empty when this location is the same as the Out Pointer.

0041E Key Token Buffer (Buffer).
The Key Token Buffer is a 16 word circular buffer used to store up to 16 key tokens.

0043E Drive Restore Flag (Byte).
Each floppy disk drive has a restore flag associated with it (bit 0 for drive 0 and bit 1 for
drive 1).
If the restore flag for the specified drive is reset prior to any disk access (read/write/verify
/format), then the restore command is issued to the FDC for that drive. If successful then
the associated flag bit is set. When the initialise sub-function of the disk interrupt is
called the restore flag is cleared.
Bit 7 is used for handling FDC hardware interrupts.

0043F Drive Motor Flag (Byte).
When a disk drive motor is running then either bit 0 or bit 1 will be set to which drive (0 or
1 respectively) is selected.

00440 Drive Motor Timeout Counter (Byte).
After each disk operation the the motor off timeout count is copied from the Disk
Parameter table (See interrupt 30) into this variable. Each time the system clock interrupt
is executed, the count is decremented. When it reaches zero the Drive Motor Flag is
reset.

00441 Disk Status (Byte).
This byte holds the status returned by the last disk operation. (See section 2.3.11 Disk
I/O Interrupt - Function 1.)

00442 FDC Results/HD Parameter Buffer (Buffer).
This seven byte buffer is used for storage of the FDC status information returned upon
the completion of a disk I/O operation. It is also used by the Hard Disk BIOS ROM for call
parameter storage.

00449 Current Video Mode (Byte).
The current Video mode from the last Int 16 setmode call is stored here.

0044A Visible Display Columns (Word).
The number of visible character columns currently being displayed is stored here.

0044C Video Display Page Size (Word).
This word holds the amount of Video RAM used by the ROM BIOS to display one page as
defined below:

Mode(s) Size

0 & 1 2048
2 & 3 4096

Location(s) Usage

4 - 6 16384
7 4096
13 8192
14 16384
15 - 16 32768

0044E Display Page Start Offset (Word).
Contains the origin of the currently active VDU display page.

00450 Cursor Address Buffer (Buffer)
This 16 byte buffer contains the row and column addresses for up to eight display pages.
This is the limiting factor is the number of pages which can be supported by the video
ROM BIOS routines.

00460 Cursor End Scan (Byte).
This byte contains the current end scan number that was programmed into the CRT
controller.

00461 Cursor Start Scan (Byte).
This byte contains the current start scan number that was programmed into the CRT
controller.

00462 Active Display Page (Byte).
This byte contains the selected display page number.

00463 CRTC I/O Address (Word).
This word contains the I/O address of the CRTC interface currently in use. (3B4 - Mono /
3D4 - Colour)

00465 Current Video Mode Control Register (Byte).
This byte contains the current contents of the Video Mode Control Register.

00466 Current CGA Colour Select Register (Byte).
This byte contains a copy of the data loaded into CGA colour select register.

0467-046B Reserved
0046C System Clock (Long Word).

The 32 bit system clock count
00470 24 Hour Flag (Byte).

When the system clock reaches 0001800B0h then it is cleared and this flag byte is set to
0FFh.
Note that reading the clock via interrupt 26 clears this flag.

00471 Break (Byte).
This byte is initially set to zero. Each time Break ([CTRL]+[NUM LOCK]) is detected, bit 7
is set. An application program using this bit to detect break must reset bit 7 when it
detects the break event.

00472 System Reset Flag (Word).
When soft reset, [CTRL]+[ALT]+[DEL], is detected this location is set to 01234h prior to
issuing a system reset. The power-up self test routine then recognizes this pattern and
does not repeat the RAM tests. Setting 1235h prevents full hardware reset.

0474 Last Hard Disk I/O Completion Code.
This location is used by the Hard Disk BIOS ROM to store the last I/O operation's
completion code.

0475 Hard Disk Drive Count.
This location is used by the Hard Disk BIOS ROM to store the number of drives on line.

Location(s) Usage

0476-0477 Reserved for Hard Disk BIOS ROM.
0478 - 47A Logical Printer Device 0 - 2 Timeout Count (Buffer).

These timeout counts specify how long the ROS should wait in half second multiples,
while trying to output a character to a logical printer channel. The are initially set to 20 (10
Second timeout).

0047B Reserved.
047C - 047D Logical Serial Device 0 - 1 Timeout Count (Buffer).

These timeout counts specify the length of the wait time half second intervals for
character I/O to a particular logical serial channel. All counts are set to 1 (for a) second
timeout).

0047E Reserved.
00480 Key Token Buffer Start Address (Word).

Offset pointer to the start of the key token buffer.
Note that the assumed buffer segment paragraph address is 0040h.

00482 Key Token Buffer End Address (Word).
Offset pointer to the start of the key token buffer.

00484 Display Rows (Byte).
This location contains the number of character rows (less one) on the display screen.

00485 Character Points (Byte).
This location contains the current character matrix length in bytes.

00487 EGC Status (Byte).
This location is used by the IGA ROM BIOS to hold its current status information
(Colour/Mono, Primary/Sec).

00488 Switches (Byte).
This location contains the current switch settings for the EGC control switches 1-4 in bits
0-3 (inverted). The upper four bits are ones.

00500 Print Screen Status (Byte).

Value Meaning

0 Print Screen completed OK.
1 Print Screen in progress.
255 Print Screen abandoned due to timeout.

2.5 Non-Volatile RAM (NVR)

The first 40 bytes of the battery backed RAM within the RTC hardware are for system parameter storage
as follows:

Byte(s) Usage Default

0-9 Time and Date parameters. --
1 RTC Control Register A. 070
11 RTC Control Register B. 002
12 RTC Control Register C. --
13 RTC Control Register D. --
14 - 19 Time and Date when machine last used. --
20 User RAM Checksum.

Byte(s) Usage Default

21 - 22 Enter Key translation token. 1C0D
23 - 24 Forward Delete Key translation token. 2207
25 - 26 Joystick Fire Button 1 translation token. FFFF
27 - 28 Joystick Fire Button 2 translation token. FFFF
29 - 30 Mouse Button 1 translation token. FFFF
31 - 32 Mouse Button 2 translation token. FFFF
33 Mouse X direction scaling factor. 00A
34 Mouse Y direction scaling factor. 00A
35 Initial VDU mode and drive count 020
36 Initial VDU Character attributes. 007
37 Size of RAM disk in 2K blocks. 000
38 Initial system UART hardware setup byte. 0E3
39 Initial external UART hardware setup byte. 0E3
40-63 Unused --

Locations 0 to 13 are RTC hardware registers. Refer to 3.8 for an explanation of their usage and setup
values.

After power-up or upon system reset the NVR is checksummed as part of initialisation. If the lower byte
of the sum is not 0AAh or if the battery voltage low bit is set in the RTC status register, then the values in
the default column are loaded into their respective locations and a warning message is displayed on
the VDU. Those locations without defaults (marked with '--') are not changed.

The default key token value in bytes 25 to 32 is a special value (FFFF) which signals the keyboard
hardware interrupt to ignore the key press rather than to insert the key token into the buffer.

The initial VDU mode (byte 35) is used to set up by the ROS on Power-Up Initialisation based on switch
settings. It is then used to setup the system status-1 channel. (DDM - bits 4 & 5. See 1.8.2 for the valid
combinations.) Bits 4 and 5 of byte 35 are set up correspondingly. Bit 6 is set if two drives are fitted else
it is cleared. The default version of byte 35 has bit 6 set (two drives) and bits 4 & 5 set to 1 & 0 (Colour,
alpha, 80 x 25 chars).

Bit 7 of byte 35 is used to enable or disable the serial I/O flow control option. Refer to section 2.3.12 for
serial I/O and flow control details.

The initial VDU character attribute (byte 36) is written to all the attribute bytes of the VDU buffer when one
of the alpha modes is selected. The default value selects a white foreground on a black background.

The RAM disk size (byte 37) is used by the MS-DOS operating system to specify RAM disk setup size.

The initial UART parameters (bytes 38 and 39) specifies 9600 baud, 8 data bits, 1 stop bit and no parity.
These values are loaded to their respective serial channel by the Serial I/O Initialise sub-function (See
Section 2.3.12: Interrupt 20).

2.6 ROS Messages

The ROS outputs a number of messages during Power-Up Self Test initialisation as detailed below.
The language in which these messages are displayed is dependent of the three option links connected

to the three least significant bits of the system printer port status. (See Table 3.1 for the interpretation of
the three link bits.)

2.6.1 Non-Fatal ROS Messages

The following messages are displayed on the primary display screen (in the default display mode as
specified by the NVR) in the situations as described. The initialisation process is allowed to complete
even though some of them may represent self test failures.

Please wait
This message is displayed on the top line of the screen after Power-Up or after a Soft Reset
([Ctrl]+[Alt]+[Del]) from the keyboard. A dot is displayed after it for each major hardware self test
segment completed successfully.

Amstrad PC nnnK (Vv.i) Last used at hh:mm on dd mn yy
This message is displayed after the successful completion of all self tests, where:
nnn = the RAM size in kilobytes.
v.i = the ROS Version (v) and Issue (i) number.
hh:mm = the hours (hh) and the minutes (mm) of last on time.
dd mn yy= the day (dd), the calendar month (mn) and the year (yy) of the last date used.

Please fit new batteries
This message is displayed below the AMSTRAD PC message when it is noted that the RTC
battery voltage low bit is set (indicating that there is either no battery installed or that the battery is
very near to failing).

Check keyboard and mouse
This message is displayed when the keyboard self test firmware does not respond with the test
pass (0AAh).

Insert a SYSTEM disk into drive A
Then press any key

This message set is displayed when the floppy disk bootstrap is unable to successfully read the
bootstrap sector from drive A after 10 retries.

Error: External ROM checksum incorrect: ROM address = nnnnnh
This message is displayed when the checksum on an external ROM is not zero (See section 2.1 -
16). The physical address of the ROM is displayed in five (nnnnn) hexadecimal digits.

2.6.2 Fatal ROS Messages

The following messages indicate that a self test segment has failed and that initialisation cannot
continue. In this situation the machine must be switched off and on again in order to reinitiate
operations. The display is switched to 80 column alpha mode and cleared prior to displaying any of
these messages.

Error: Faulty SYSTEM RAM
Error: Faulty VDU RAM
Error: Faulty interrupt controller
Error: Faulty direct memory access controller
Error: Faulty floppy disk controller or disk drive
Error: Faulty interval timer
Error: Faulty system status register
Error: Faulty real time clock
Error: Faulty VDU controller

Error: Faulty system printer port
Error: Faulty system serial port
Error: Faulty ROS ROM checksum
Error: Faulty memory (parity error)

When one of these failures occurs, no other testing is run since further testing may require use of the
failing component. For this reason the system is placed in a non-interruptible loop. Failures of this sort
are not expected to occur even intermittently. When any self test failure does occur it should be referred
to a qualified AMSTRAD service facility for further diagnostic testing.

Section 1 Index Section 3

Section 2 Index Appendices

3 Reference Information
The following tables document a number of the hardware and software features of the AMSTRAD
PC1640 some of which may have been already mentioned in earlier sections but are repeated here for
easy reference.

3.1 Language Links.

The lower three bits of the Printer Status Channel (I/O address 379) are wired to reflect the (one's
complement) state of a set of option links (LK1 - LK3) located on the left side of the main board about 2
inches below the printer connector. They are used by the ROS firmware to define the language option or
diagnostic mode option as detailed os follows:

LK1 LK2 LK3 ROS Usage

OFF OFF OFF English Language.
OFF OFF ON German Language.
OFF ON OFF French Language.
OFF ON ON Spanish Language.
ON OFF OFF Danish Language.
ON OFF ON Swedish Language.
ON ON OFF Italian Language.
ON ON ON Diagnostic Mode.

The ROS messages are displayed in the selected languge. In diagnostic mode, the messages revert to
English, and the normal testing is skipped. Any self test failures are reported but are ignored and upon
completion a disk bootstrap is attempted. This enables loading of an extended set of diagnostic
software. The actual value observed by reading I/O address 379h is the one's complement value so that
the values range (when masked with 07h) from 7 for English, 6 for German, and etc. down to 0.

3.2 Processor Memory Usage.

The following is a repeat of the processor's physical memory layout in tabular form with interrupts and
ROS areas included.

Location(s) Usage

00000 - 003FF Processor interrupt vectors 0 to 255. To derive an individual interrupt vector's
starting address multiply the vector number by four.

00400 - 00500 ROS Variables. (See section 2.4)
00501 - 9FFFF System (or User) RAM artea. The 640K byte area (inclusive of the previous entries)

is the maximum amount of system memory.
A0000 - BFFFF 128K byte area reserved for IGA video RAM and other display adapters (See 1.11

for buffers)

Location(s) Usage

C0000 - C3FFF IGA ROM BIOS area with executable code in the first 2000h with mode setup
tables and fonts in the second 2000h area. This area of ROM (as well as the
following C4000-C7FFF fonts area) can be switched off by sw10 set to ON.

C4000 - C7FFF Amstrad Foreign Fonts for Danish, Portugese, and Greek national variants. This
area can be switched off by sw9 in the OFF position.

C8000 - C9FFF Base Hard Disk Controller ROM BIOS area.
CA000 - EFFFF This area used by additional HD controllers and peripheral cards (such as LANs)

which require support via a BIOS ROM. The Amstrad Diagnostic Pack ROM
resides from E0000 to E7FFF when it is installed.

F0000 - FFFFF 64K byte area reserved for System ROM. The ROS resides in the 16K byte area
from FC000 to FFFFF. The remaining 48K bytes is reserved for future expansion.
The 16K byte ROS ROM repeats four times in this address range.

3.3 Keyboard and Key Codes.

Key Code Hex (UK) Key Cap

1 01 ESC
2 02 1 and !
3 03 2 and "
4 04 3 and £
5 05 4 and $
6 06 5 and %
7 07 6 and ^
8 08 7 and &
9 09 8 and *
10 0A 9 and (
11 0B 0 and)
12 0C - and _
13 0D = and +
14 0E <-DEL
15 0F TAB
16 10 Q
17 11 W
18 12 E
19 13 R
20 14 T
21 15 Y
22 16 U
23 17 I
24 18 O
25 19 P
26 1A [and {
27 1B] and }
28 1C CR
29 1D CTRL

Key Code Hex (UK) Key Cap

30 1E A
31 1F S
32 20 D
33 21 F
34 22 G
35 23 H
36 24 J
37 25 K
38 26 L
39 27 ; and :
40 28 ' and @
41 29 # and ~
42 2A LEFT SHIFT
43 2B \ and |
44 2C Z
45 2D X
46 2E C
47 2F V
48 30 B
49 31 N
50 32 M
51 33 , and <
52 34 . and >
53 35 / and ?
54 36 RIGHT SHIFT
55 37 * and PRTSC
56 38 ALT
57 39 SPACE
58 3A CAPS LOCK
59 3B F1
60 3C F2
61 3D F3
62 3E F4
63 3F F5
64 40 F6
65 41 F7
66 42 F8
67 43 F9
68 44 F10
69 45 NUM LOCK
70 46 SCROLL LOCK
71 47 KEY PAD 7
72 48 KEY PAD 8
73 49 KEY PAD 9

Key Code Hex (UK) Key Cap

74 4A KEY PAD -
75 4B KEY PAD 4
76 4C KEY PAD 5
77 4D KEY PAD 6
78 4E KEY PAD +
79 4F KEY PAD 1
80 50 KEY PAD 2
81 51 KEY PAD 3
82 52 KEY PAD 0
83 53 KEY PAD .
84 - 111 54 - 6F UNDEFINED
112 70 DEL ->
113 - 115 71 - 73 UNDEFINED
116 74 ENTER
117 - 118 75 - 76 UNDEFINED
119 77 JOY FIRE2
120 78 JOY FIRE1
121 79 JOY RIGHT
122 7A JOY LEFT
123 7B JOY DOWN
124 7C JOY UP
125 7D MOUSE M2
126 7E MOUSE M1
127 7F UNDEFINED

3.4 Asynchronous Communications Element (8250) Registers.

For serious design purposes, it is recommended that the designer obtain the standard INS8250 data
sheets. The following excerpt are the major software accessible registers.

Modem Status Register (MSR) [R6] - I/O Address 3FEh.

Bit(s) Function

7 Data Carrier Detect (DCD).
6 Ring Indicator (RI).
5 Data Set Ready (DSR).
4 Clear To Send (CTS).
3 Delta Data Carrier Detect (DDCD).
2 Trailing Edge Ring Indicator (TREI).
1 Delta Data Set Ready (DDSR).
0 Delta Clear To Send (DCTS).

Line Status Register (LSR) [R5] - I/O Address 3FDh.

Bit(s) Function

Bit(s) Function

7 Always Clear (0).
6 Transmitter Shift Register Empty (TSRE).
5 Transmitter Holding Register Empty (THRE).
4 Break Interrupt (BI).
3 Framing Error (FE).
2 Parity Error (PE).
1 Overrun Error (OE).
0 Data Ready (DR).

Modem Control Register (MCR) [R4] - I/O Address 3FCh.

Bit(s) Function

7 Always Clear (0).
6 Always Clear (0).
5 Always Clear (0).
4 Loop (Diagnostic Mode).
3 Out2 (Looped to RI).
2 Out1 (Looped to DCD).
1 Request to Send (RTS) (Looped to DSR).
0 Data Terminal Ready (DTR) (Looped to CTS).

Line Control Register (MCR) [R3] - I/O Address 3FBh.

Bit(s) Function

7 Divisor Latch Access (DLAB) (Selects Regs 0 & 1).
6 Set Break.
5 Stick Parity (Holds parity as EPS not if PEN set).
4 Even parity Select (EPS).
3 Parity Enable (PEN).
2 Number of Stop Bits (STB) (0=1 Stop Bit, 1= >1).
1 Word Length Select Bit 1 (WLS1). (0-3 = 5-8 Bits)
0 Word Length Select Bit 0 (WLS0).

Interrupt Identification Register (IIR) [R2] - I/O Address 3FAh.

Bit(s) Function

7 Always Clear (0).

IID Int Type

3 Rx Line Status
2 Rx Data Avail.
1 Tx H.Reg Empty.

6 Always Clear (0).
5 Always Clear (0).
4 Always Clear (0).
3 Always Clear (0).
2 Interrupt ID Bit 1 (IID1).
1 Interrupt ID Bit 0 (IID0).
0 Not Interrupt Pending.

Interrupt Enable Register (IER) [DLAB = 0:R1] - I/O Address 3F9h.

When the Divisor Access Latch Bit (Line Control Register bit 7: DLAB) is clear, inputting I/O address 3F9
reads the IER.

Bit(s) Function

7 Always Clear (0).
6 Always Clear (0).
5 Always Clear (0).
4 Always Clear (0).
3 Modem Status (EDSSI).
2 Receiver Line Status (ELSI).
1 Transmitter Holding Register Empty (ETBEI).
0 Received Data Available (ERBAI).

Receive Buffer Register (RBR)
Transmit Holding Register (THR) [DLAB = 0:R0] - I/O Address 3F8h.

When the Divisor Access Latch Bit (Line Control Register bit 7: DLAB) is clear, reading and writing I/O
location 3F8 accesses the RBR/THR registers. An input from I/O address 3F8 reads the Receiver buffer
Register (bits 0 to 7). Outputting to I/O address 3F8 writes the Transmitter holding Register.

Divisor Latches MS & LS (DLL & DLM) [R0 & R1 when DLAB Set].

When the Divisor Access Latch Bit (Line Control Register bit 7: DLAB) is set, then registers 0 & 1 are the
(16-bit) Divisor Register. The least significant bits are written to by outputting to address 3F8 and the
most significant bits are written to by an output to location 3F9. The divisors and their respective baud
rates are as follows.

Baud Rate Divisor R1 & R0 (hex)

75 1536 06 - 00
300 384 01 - 80
600 192 00 - C0
1200 96 00 - 60
2400 48 00 - 30
4800 24 00 - 18
9600 12 00 - 0C

3.5 High Performance Programmable DMA Controller (8237A-4)
Registers.

The following are the major software accessible 8237A registers.

Command Register - Write I/O Address 008.

Bit(s) Function (Action ... { 1 / 0 })

7 DACK sense active { hi / lo }.
6 DREQ sense active { hi / lo }.
5 {Extended/Late} write selection.
4 {Rotating/Fixed} priority.

Bit(s) Function (Action ... { 1 / 0 })

3 {Compressed/Normal} timing.
2 {Disable/Enable} Controller.
1 {Enable/Disable} Channel 0 address hold.
0 {Enable/Disable} Memory-to-memory (not supported).

Status Register - Read I/O Address 008.

Bit(s) Function

7 Channel 3 Request.
6 Channel 2 Request.
5 Channel 1 Request.
4 Channel 0 Request.
3 Channel 3 has reached TC.
2 Channel 2 has reached TC.
1 Channel 1 has reached TC.
0 Channel 0 has reached TC.

Mode Register - I/O Address 00B [WO].

Bit(s) Function

7 Mode Select Bit 1. (Modes: 0 = Demand, 1 = Single,
6 Mode Select Bit 0. 2 = Block, 3 = Cascade)
5 Address {decrement/increment} select.
4 Autoinitialisation {enable/disable}.
3 Transfer Type Bit 1. (Modes: 0 = Verify, 1 = Write,
2 Transfer Type Bit 0. 2 = Read, 3 = Illegal)
1 Channel Select Bit 1. (Channels: 0-3 respectively)
0 Channel Select Bit 0.

Request Register - I/O Address 009h [WO].

Bit(s) Function

7 Don't Care.
6 Don't Care.
5 Don't Care.
4 Don't Care.
3 Don't Care.
2 Request Bit {Set/Reset}.
1 Channel Select Bit 1. (Channels: 0-3 respectively)
0 Channel Select Bit 0.

Mask Set/Reset Register - I/O Address 00Ah [WO].

Bit(s) Function

7 Don't Care.
6 Don't Care.

Bit(s) Function

5 Don't Care.
4 Don't Care.
3 Don't Care.
2 {Set/Reset} Mask Bit.
1 Channel Select Bit 1. (Channels: 0-3 respectively)
0 Channel Select Bit 0.

Mask Write Register - I/O Address 00F [WO].

Bit(s) Function

7 Don't Care.
6 Don't Care.
5 Don't Care.
4 Don't Care.
3 {Set/Clear} Channel 3 Mask Bit.
2 {Set/Clear} Channel 2 Mask Bit.
1 {Set/Clear} Channel 1 Mask Bit.
0 {Set/Clear} Channel 0 Mask Bit.

3.6 Programmable Interrupt Controller (8259A-2) Command
Words.

The Initialisation Command Word (ICW) sequence is as follows:

Initialisation Command Word 1 (ICW1) - Write I/O Address 020h.

Bit(s) Function (Action ... { 1/0 })

7 N/A.
6 N/A.
5 N/A.
4 Always Set (1)
3 {Level/Edge} Trigger Mode.
2 Call Address Interval of {4/8}.
1 {Single/Cascade} Mode (Need ICW3 if Single Mode).
0 ICW4 {Needed/Not Needed}.

Initialisation Command Word 2 (ICW2) - Write I/O Address 021h.

Bit(s) Function (Action ... { 1/0 })

7 Interrupt Type Bit 7 (T7).
6 Interrupt Type Bit 6 (T6).
5 Interrupt Type Bit 5 (T5).
4 Interrupt Type Bit 4 (T4).
3 Interrupt Type Bit 3 (T3).
2 Not used.

Bit(s) Function (Action ... { 1/0 })

1 Not used.
0 Not used.

This byte selects one of the interrupt service vector locations (in absolute locations 0 through 3FF) to be
used when interrupting. Type bits 3 - 7 (asserted on the data bus during the INTA cycle) map to address
bits 5 - 9 for interrupt vector selection. The lower three type bits are derived from the interrupt level.

Initialisation Command Word 3 (ICW3) - Write I/O Address 021h.

This command word is not used since Single (ICW1 bit 1) is always true in the PC1640. When used,
this command word specifies which IR has a slave in Master mode, or it a slave then bits 0 through 3
specify the slave ID number (0 to 7).

Bit(s) Function (Action ... { 1/0 })

7 Always clear (0).
6 Always clear (0).
5 Always clear (0).
4 {Enable/Disable} Special Fully Nested Mode.
3 Buffered Mode {On/Off}.
2 {Master/Slave} Mode (Only valid in Buffered Mode).
1 {Auto/Normal} EOI.
0 Always set (1) - (8086/8088 Mode).

Operation Control Words

The operation control words select various 8259A modes of operation.

Operation Control Word 1 (OCW1) - Write I/O Address 021.

Bit(s) Function (Action ... { 1/0 })

7 Interrupt Mask 7 {Set/Reset}.
6 Interrupt Mask 6 {Set/Reset}.
5 Interrupt Mask 5 {Set/Reset}.
4 Interrupt Mask 4 {Set/Reset}.
3 Interrupt Mask 3 {Set/Reset}.
2 Interrupt Mask 2 {Set/Reset}.
1 Interrupt Mask 1 {Set/Reset}.
0 Interrupt Mask 0 {Set/Reset}.

The eight mask bits either mask (i.e. inhibit when M=1) or enable their respective channels.

Operation Control Word 2 (OCW2) - Write I/O Address 020h.

Bit(s) Function

7 Rotate (R) Bit.
6 Specific (SL) Bit.
5 End of Interrupt (EOI) bit.
4 Always zero.

Bit(s) Function

3 Always zero.
2 Level bit 2 (L2).
1 Level bit 1 (L1).
0 Level bit 0 (L0).

The level bits are required when specific (SL) is set.

Operation Control Word 2 (OCW2) - Write I/O Address 020h.

Bit(s) Function (Action ... { 1/0 })

7 Always zero.
6 Enable Special Mask Mode (ESMM) bit.
5 Special Mask Mode (SMM) {Set/Reset}.
4 Always zero.
3 Always set.
2 {Enable/Disable} Poll Command.
1 Read Register (RR) enable bit.
0 Read {IS/IR} register on next -RD pulse (RIS).

The ESMM bit must be set for the SMM bit to have any effect. Similarly the RR bit must be set for the RIS
bit to have an effect.

3.7 Programmable Interval Timer (8253) Registers.

The 8253 PIT has four addressable elements, the three counters (0 - 2) which are read or written 8 bits
at a time (on I/O addresses 40h - 42h) and the Control Word register (write I/O address 043h).

Bit(s) Function (Action ... { 1/0 })

7 Select Counter bit 1 (SC1).
6 Select Counter bit 0 (SC0).
5 Read/Load bit 1 (RL1).
4 Read/Load bit 0 (RL0).
3 Mode bit 2 (M2).
2 Mode bit 1 (M1).
1 Mode bit 0 (M0).
0 {Enable/Disable} Binary Coded Decimal (BCD) counter.

The SC bits select counters 0-2 and the 3 (both bits set) state is illegal.

The RL bits enable the counter's Read/Load operation as follows:

0:
Counter Latching - Snapshot current counter (to a holding register) for next read operation.

1:
Read/Load MS byte only.

2:
Read/Load LS byte only.

3:
Read/Load LS byte first then the MS byte.

The Mode bits select one of five valid modes (six & seven wrap around to modes two and three). The
modes are as follows:

0:
Interrupt on Terminal count.

1:
Programmable One-Shot.

2:
Rate Generator.

3:
Square Wave generator..

4:
Software Triggered Strobe.

5:
Hardware triggered Strobe.

3.8 Real Time Clock (HD146818) Registers.

The HD146818 is a CMOS peripheral device which combines three unique features: a complete time-
of-day clock with an alarm and one hundred year calendar, a programmable periodic interrupt and
square-wave generator, and 50 bytes of low-power static RAM.

The figure below shows the address map of the HD146818. The memory consists of 50 bytes of
general purpose RAM, 10 RAM bytes which normally contain the time, calendar, and alarm data, and
four control and status bytes. All bytes are directly readable and writable by the processor except
Registers C and D which are read only. Bit 7 of Register A and the seconds byte are also read only.

0 Seconds 00
1 Sec Alarm 01
2 Minutes 02
3 Min Alarm 03
4 Hours 04
5 Hr Alarm 05
6 Day of Wk 06
7 Day of Mo 07
8 Month 08
9 Year 09
10 Register A 0A
11 Register B 0B
12 Register C 0C
13 Register D 0D

14 0E
50
Bytes
User
RAM

63 3F

3.8.1 Time, Calendar and Alarm Locations

The processor obtains time and calendar information by reading the appropriate locations. The
program may initialise the time, calendar and alarm by writing these locations. The contents of the 10
time, calendar and alarm bytes may either be binary or binary-coded decimal (BCD).

Before initialising the internal registers the SET bit in register B should be set to a "1" to prevent
time/calendar updates from occurring. The program initialises the 10 locations in the selected format
(binary or BCD), then indicates the format in the data mode (DM) bit of register B. All 10 locations must
use the fame data mode, either binary or BCD. The SET bit may now be cleared to allow updates. Once
initialised the real-time clock makes all updates in the selected data mode. The data mode cannot be
changed without reinitialising the 10 data bytes.

The table below shows the binary and BCD formats of the time, calendar and alarm locations.

Address Function Range Binary Data Mode BCD Data Mode

0 Seconds 0-59 00h-3Bh 00h-59h
1 Sec Alarm 0-59 00h-3Bh 00h-59h
2 Minutes 0-59 00h-3Bh 00h-59h
3 Min Alarm 0-59 00h-3Bh 00h-59h

4

Hours 01h-0Ch (AM) 01h-12h (AM)
12-Hr Mode 1-12 81h-8Ch (PM) 81h-92h (PM)

24-Hr Mode 0-23 00h-17h 00h-23h

5

Hrs Alarm 01h-0Ch (AM) 01h-12h (AM)
12-Hr Mode 1-12 81h-8Ch (PM) 81h-92h (PM)

24-Hr Mode 0-23 00h-17h 00h-23h

6 Day of Wk 1-7 01h-07h 01h-07h
7 Day of Mon 1-31 01h-1Fh 01h-31h
8 Month 1-12 01h-0Ch 01h-12h
9 Year 0-99 00h-63h 00h-99h

For the Day of the Week, Sunday = 1.

The 24/12 bit in register B establishes whether the hour locations represent 1-to-12 or 0-to-23. The
24/12 bit cannot be changed without reinitialising the hour locations. When the 12-hour format is
selected the high-order bit of the hours represents PM when it is a "1". The time, calendar and alarm
bytes are not always accessible by the processor. Once per second the 10 bytes are switched to the
update logic to be advanced by one second and to check for an alarm condition. If any of the 10
locations are read at this time, the data outputs are undefined. The update-in-progress (UIP) bit in
Register A may be used to determine if the update cycle is in progress or not. The UIP bit goes high
once a second and the update cycle begins 244 uS later. Therefore, if a "0" is read on the UIP bit, the
user has at least 244 uS before the time/calendar data will be changed.

3.8.2 RTC Register Locations

The HD 146818 has four registers which are accessible to the processor. The four registers are fully
accessible during the update cycle.

The bit assignments for Register A (address 0Ah) are as follows:

Bit Assignment

7 Update In Progress (UIP)
6 Divider Bit 2 (DV2)
5 Divider Bit 1 (DV1)
4 Divider Bit 0 (DV0)
3 Rate Selection Bit 3 (RS3)
2 Rate Selection Bit 2 (RS2)
1 Rate Selection Bit 1 (RS1)
0 Rate Selection Bit 0 (RS0)

The UIP bit indicates whether the 10 time, calendar and alarm bytes are being updated or not as
explained above.

The three Divider bits (DV2-DV0) are used to identify which of the three time base frequencies is in use
or to reset the divider chain.

The four rate selection bits (RS3-RS0) select one of 15 taps on the 22-stage divider chain, or disable
the divider output. The tap selected may be used to generate an output on the square (SQW) pin and/or
a periodic interrupt.

The bit assignments for Register B (address 0Bh) are as follows:

Bit Assignment

7 SET Bit
6 Periodic Interrupt Enable (PIE) Bit
5 Alarm Interrupt Enable (AIE) Bit
4 Update-ended Interrupt Enable (UIE) Bit
3 Square-Wave Enable (SQWE) Bit
2 Data Mode (DM) Bit
1 12/12 hour format Bit
0 Daylight Savings Enable (DSE) Bit

When the SET bit is a "0" the update cycle functions normally by advancing the counts once per second.
When the SET bit is written to a "1", any update cycle in progress is aborted and the processor may
initialise the time and calendar locations without updates occurring. SET is a read/write bit which is not
modified by -RES or internal functions of the HD146818.

The PIE bit is a read/write bit which allows the periodic-interrupt (PF) bit to cause the -IRQ pin to be
driven low. The program writes a "1" to the PIE bit in order to receive periodic interrupts at the rate
specified by the RS3 RS0 bits in Register A. A "0" in PIE blocks 'IRQ from being generated, bu the
periodic flag (PF) bit still goes high at the periodic rate.

The AIE bit is a read/write bit which when set to "1" permits the alarm flag (AF) to assert -IRQ. An alarm
interrupt occurs for each second that the three time bytes equal the three alarm bytes. When AIE is a "0"
the AF bit does not initiate an -IRQ. The -RES pin clears AIE to "0". The internal functions do not affect
the AIE bit.

The UIE bit is a read/write bit which enables the update-end flag (UF) bit to assert -IRQ. The -RES pin

going low or the SET bit going high clears the UIE bit.

When the SQWE bit is set to a "1" by the processor, a square-wave signal at the frequency specified by
the rate selection bits (RS3 to RS0) appears on the SQW pin. When the SQWE bit is set to "0" the SQW
pin is held low. The SQWE bit is cleared by the -RES pin. SQWE is a read/write bit.

The DM bit indicates whether time and calendar updates are to use binary or BCD format. DM is a
read/write bit and is not modified by -RES or internal functions of the HD146818. A "1" in DM signifies
binary data and a "0" specifies BCD data mode.

The 24/12 control bit specifies the format of the hour bytes. A "1" specifies 24-hour mode and a "0"
specifies 12-hour mode. It is a read/write bit and is not affected by -RES or any HD146818 internal
functions.

The DSE bit is a read/write bit which when set to "1" enables daylight savings mode. When enabled,
two special updates take place. On the last sunday in April the time increments from 1:59:59 to 3:00:00
AM. On the last sunday in October when the time first reaches 1:59:59 AM is decremented to 1:00:00
AM. DSE is not changed by -RES or any internal operations.

The bit assignments for Register C (address 0Ch) are as follows:

Bit Assignment

7 Interrupt Request Flag (IRQF) Bit
6 Periodic Interrupt Flag (PF) Bit
5 Alarm Interrupt Flag (AF) Bit
4 Update-Ended Interrupt Flag (UF) Bit
3-0 0

The C register is a read-only register and a program write has no effect any of the bits.

The IRQF bit is set by the logical equation: IRQF = PF⋅PIE + AF⋅AIE + UF⋅UIE. Any time the IRQF bit is a
"1", the IRQ pin is driven low. All flag bits in the C register are cleared after a program read or when the
-RES pin is low.

The PF bit is set to "1" when a particular edge is detected in the selected tap of the divider chain as
selected by the RS3 to RS0 bits. The PF bit is set to a "1" independent of the state the PIE bit.

The AF bit is set to a "1" when the current time matches the alarm time.

The UF bit is set after each update cycle.

The remaining bits (3 to 0) are always low.

The bit assignments for Register D (address 0Dh) are as follows:

Bit Assignment

7 Valid RAM Time (VRT) Bit
6 - 0 0

The VRT bit indicates that the contents of the RAM and time are valid. A "0" appears in the VRT bit when
the power sense (PS) pin is low. The processor can set the VRT bit when the time and calendar are

initialised to indicate that they are valid. The VRT bit is a read-only bit and is not modified by the -RES
pin. The VRT bit can only be set by reading the D register.

Bits 6 to 0 are unused and are always read as zeroes.

3.9 Floppy Disk Controller (uPD765A).

The uPD765A Floppy Disk Controller (FDC) contains two registers which are accessible to the CPU; the
Main Status Register (at I/O address 03F4h) and the Data Register (at I/O address 03F5h) both of which
are 8 bits wide. The Status register contains the status of the FDC and may be accessed at any time.
The Data Register is actually made up of several registers in a stack and stores data, commands and
Floppy Disk Drive (FDD) status information. Data is written into the data register in order to program a
particular command. The data address is read in order to obtain the result after an operation. The Main
Status register (I/O address 3F4h) may only be read and is used to facilitate the transfer of data
between the CPU and the uPD765A FDC.

There are 15 separate commands which the uPD765A FDC can execute. Each of these commands
require multiple bytes to fully specify the operation. The result after execution of the command may also
be a multi-byte transfer back to the processor. Because of this multi-byte interchange of information
between the processor and the FDC, it is convenient to consider each command as consisting of three
phases:

Command Phase:
The FDC accepts all information to perform a particular operation from the CPU.

Execution Phase:
The FDC performs the operation.

Result Phase:
After completion of the operation, status and housekeeping information are made available to the
CPU.

The uPD765A contains five status registers. The main status register mentioned earlier which may be
read at any time and four result phase status registers (ST0, ST1, ST2 and ST3) which are only made
available during the Result Phase after completion of a command. The particular command which has
been executed determines which status registers will be returned.

The Command bytes which are sent to the uPD765A during the Command Phase must occur in the
order shown in the command table. That is, the command code must be sent first followed by the other
bytes in the prescribed sequence. No foreshortening of the Command Phase or the Result Phase is
allowed. After the last byte of data in the Command Phase is sent the Execution Phase automatically
starts. In a similar fashion, when the last byte of data is read out in the Result Phase, the command is
automatically ended and the uPD765A is ready for a new command.

It is important to note that during the Result phase all bytes shown in the Command table must be read.
The Read Data command, for example has seven bytes listed in the result phase. All seven bytes must
be read out else a new command will not be accepted.

The status registers as follows:

Main Status Register

Bit(s) Function

Bit(s) Function

7 Request for Master (RQM).
6 Data Input/Output (DIO).
5 Execution Mode (EXM).
4 FDC Busy (CB).
3 FDD 3 Busy (D3B).
2 FDD 2 Busy (D2B).
1 FDD 1 Busy (D1B).
0 FDD 0 Busy (D0B).

Status Register 0 (ST0)

Bit(s) Function

7 Interrupt Code bit 1 (IC1).
6 Interrupt Code bit 2 (IC2).
5 Seek End (SE).
4 Equipment Check (EC).
3 Not Ready (NR).
2 Head Address (HD).
1 Unit Select 1 (US1).
0 Unit Select 2 (US2).

Status Register 1 (ST1)

Bit(s) Function

7 End of Cylinder (EN).
6 Always zero.
5 Data Error (DE).
4 Over Run (OR).
3 Always zero.
2 No Data (ND).
1 Not Writable (NW).
0 Missing Address Mark (MA).

Status Register 2 (ST2)

Bit(s) Function

7 Always zero.
6 Control Mark (CM).
5 Data Error in Data Field (DD).
4 Wrong Cylinder (WC).
3 Scan Equal Hit (SH).
2 Scan Not Satisfied (SN).
1 Bad Cylinder (BC).
0 Missing Address Mark in Data Field (MD).

Status Register 3 (ST3)

Bit(s) Function

7 Fault (FT).
6 Write Protect (WP).
5 Ready (RY).
4 Track 0 (T0).
3 Two Side (TS).
2 Head Address (HD).
1 Unit Select 1 (US1).
0 Unit Select 0 (US0).

The Commands are as follows:

Read Data

Command Phase: 9 bytes.

Byte 1: Command Code.

Bit(s) Function (Action ... { 1 / 0 })

7 (MT) Multi-Track {Enable/Disable}.
6 (FM) Select {MFM/FM} (Single/Dobule density) Mode.
5 (SK) Enable Skip deleted data address mark.
4 0.
3 0.
2 1.
1 1.
0 0.

Byte 2: Head and Unit select.

Bit(s) Function

7-3 Don't Care.
2 HD - Head Select (0 or 1).
1 US1.
0 US0 - Unit Select (0 or 1).

Byte 3: Cylinder Number (0-76).

Byte 4: Head Number (as specified in the ID field).

Byte 5: Sector to be read.

Byte 6: Number of bytes per sector.

Byte 7: EOT - Final sector number on track.

Byte 8: GPL - Gap 3 Length.

Byte 9: DTL - Data Length to be read.

During execution data is transferred between the FDD and the CPU memory.

The Result phase returns 7 bytes:

Byte 1: ST0 - Status register 0 (See ST0 table).

Byte 2: ST1 - Status register 1 (See ST1 table).

Byte 3: ST2 - Status register 2 (See ST2 table).

Byte 4: Final Cylinder number.

Byte 5: Final head read.

Byte 6: Final Sector read.

Byte 7: Number of bytes read.

Read Track

Command Phase: 9 bytes.

Byte 1: Command Code.

Bit(s) Function (Action ... { 1 / 0 })

7 0.
6 (FM) Select {MFM/FM} (Single/Dobule density) Mode.
5 (SK) Enable Skip deleted data address mark.
4 0.
3 0.
2 0.
1 1.
0 0.

Byte 2: Head and Unit select.

Bit(s) Function

7-3 Don't Care.
2 HD - Head Select (0 or 1).
1 US1.
0 US0 - Unit Select (0 or 1).

Byte 3: Cylinder Number (0-76).

Byte 4: Head Number (as specified in the ID field).

Byte 5: Sector to be read.

Byte 6: Number of bytes per sector.

Byte 7: EOT - Final sector number on track.

Byte 8: GPL - Gap 3 Length.

Byte 9: DTL - Data Length to be read.

During execution data is transferred between the FDD and the CPU memory. The FDC reads all data
fields from index hole to EOT.

The Result phase returns 7 bytes:

Byte 1: ST0 - Status register 0 (See ST0 table).

Byte 2: ST1 - Status register 1 (See ST1 table).

Byte 3: ST2 - Status register 2 (See ST2 table).

Byte 4: Final Cylinder number.

Byte 5: Final head read.

Byte 6: Final Sector read.

Byte 7: Number of bytes read.

Read Deleted Data

Command Phase: 9 bytes.

Byte 1: Command Code.

Bit(s) Function (Action ... { 1 / 0 })

7 (MT) Multi-Track {Enable/Disable}.
6 (FM) Select {MFM/FM} (Single/Dobule density) Mode.
5 (SK) Enable Skip deleted data address mark.
4 0.
3 1.
2 1.
1 0.
0 0.

Byte 2: Head and Unit select.

Bit(s) Function

7-3 Don't Care.
2 HD - Head Select (0 or 1).
1 US1.
0 US0 - Unit Select (0 or 1).

Byte 3: Cylinder Number (0-76).

Byte 4: Head Number (as specified in the ID field).

Byte 5: Sector to be read.

Byte 6: Number of bytes per sector.

Byte 7: EOT - Final sector number on track.

Byte 8: GPL - Gap 3 Length.

Byte 9: DTL - Data Length to be read.

During execution data is transferred between the FDD and the CPU memory.

The Result phase returns 7 bytes:

Byte 1: ST0 - Status register 0 (See ST0 table).

Byte 2: ST1 - Status register 1 (See ST1 table).

Byte 3: ST2 - Status register 2 (See ST2 table).

Byte 4: Final Cylinder number.

Byte 5: Final head read.

Byte 6: Final Sector read.

Byte 7: Number of bytes read.

Read ID

Command Phase: 9 bytes.

Byte 1: Command Code.

Bit(s) Function (Action ... { 1 / 0 })

7 0.
6 (FM) Select {MFM/FM} (Single/Dobule density) Mode.
5 0.
4 0.
3 1.
2 0.
1 1.
0 0.

Byte 2: Head and Unit select.

Bit(s) Function

7-3 Don't Care.
2 HD - Head Select (0 or 1).
1 US1.

Bit(s) Function

0 US0 - Unit Select (0 or 1).

During execution the first correct ID information on the cylinder is stored in the Data Register.

The Result phase returns 7 bytes:

Byte 1: ST0 - Status register 0 (See ST0 table).

Byte 2: ST1 - Status register 1 (See ST1 table).

Byte 3: ST2 - Status register 2 (See ST2 table).

Byte 4: Cylinder.

Byte 5: head.

Byte 6: Sector.

Byte 7: Number of bytes per sector.

Write Data

Command Phase: 9 bytes.

Byte 1: Command Code.

Bit(s) Function (Action ... { 1 / 0 })

7 (MT) Multi-Track {Enable/Disable}.
6 (FM) Select {MFM/FM} (Single/Dobule density) Mode.
5 0.
4 0.
3 0.
2 1.
1 0.
0 1.

Byte 2: Head and Unit select.

Bit(s) Function

7-3 Don't Care.
2 HD - Head Select (0 or 1).
1 US1.
0 US0 - Unit Select (0 or 1).

During execution data is transferred between the cpu memory and the FDD.

The Result phase returns 7 bytes:

Byte 1: ST0 - Status register 0 (See ST0 table).

Byte 2: ST1 - Status register 1 (See ST1 table).

Byte 3: ST2 - Status register 2 (See ST2 table).

Byte 4: Final Cylinder number.

Byte 5: Final head written.

Byte 6: Final Sector written.

Byte 7: Number of bytes written.

Write Deleted Data

Command Phase: 9 bytes.

Byte 1: Command Code.

Bit(s) Function (Action ... { 1 / 0 })

7 (MT) Multi-Track {Enable/Disable}.
6 (FM) Select {MFM/FM} (Single/Dobule density) Mode.
5 0.
4 0.
3 1.
2 0.
1 0.
0 1.

Byte 2: Head and Unit select.

Bit(s) Function

7-3 Don't Care.
2 HD - Head Select (0 or 1).
1 US1.
0 US0 - Unit Select (0 or 1).

Byte 3: Cylinder Number (0-76).

Byte 4: Head Number (as specified in the ID field).

Byte 5: Sector.

Byte 6: Number of bytes per sector.

Byte 7: EOT - Final sector number on track.

Byte 8: GPL - Gap 3 Length.

Byte 9: DTL - Data Length to be written.

During execution data is transferred between the CPU memory and the FDD.

The Result phase returns 7 bytes:

Byte 1: ST0 - Status register 0 (See ST0 table).

Byte 2: ST1 - Status register 1 (See ST1 table).

Byte 3: ST2 - Status register 2 (See ST2 table).

Byte 4: Final Cylinder number.

Byte 5: Final head written.

Byte 6: Final Sector written.

Byte 7: Number of bytes written.

Format Track

Command Phase: 6 bytes.

Byte 1: Command Code.

Bit(s) Function (Action ... { 1 / 0 })

7 0.
6 (FM) Select {MFM/FM} (Single/Dobule density) Mode.
5 0.
4 0.
3 1.
2 1.
1 0.
0 1.

Byte 2: Head and Unit select.

Bit(s) Function

7-3 Don't Care.
2 HD - Head Select (0 or 1).
1 US1.
0 US0 - Unit Select (0 or 1).

Byte 3: Number of bytes per sector.

Byte 4: Number of sectors per track.

Byte 5: GPL - Gap 3 Length.

Byte 6: D - Filler Byte.

During execution the FDC writes address headers to the entire track.

The Result phase returns 7 bytes:

Byte 1: ST0 - Status register 0 (See ST0 table).

Byte 2: ST1 - Status register 1 (See ST1 table).

Byte 3: ST2 - Status register 2 (See ST2 table).

Byte 4: Cylinder number.

Byte 5: Head.

Byte 6: Sector.

Byte 7: Number of bytes per sector.

Scan Equal

Command Phase: 9 bytes.

Byte 1: Command Code.

Bit(s) Function (Action ... { 1 / 0 })

7 (MT) Multi-Track {Enable/Disable}.
6 (FM) Select {MFM/FM} (Single/Dobule density) Mode.
5 (SK) Enable Skip deleted data address mark.
4 1.
3 0.
2 0.
1 0.
0 1.

Byte 2: Head and Unit select.

Bit(s) Function

7-3 Don't Care.
2 HD - Head Select (0 or 1).
1 US1.
0 US0 - Unit Select (0 or 1).

Byte 3: Cylinder Number (0-76).

Byte 4: Head Number (as specified in the ID field).

Byte 5: Sector.

Byte 6: Number of bytes per sector.

Byte 7: EOT - Final sector number on track.

Byte 8: GPL - Gap 3 Length.

Byte 9: STP - Step Factor: 1 = Contiguous: 2 = Alternate Sectors.

During execution data is transferred from the CPU memory and compared with data from the FDD.

The Result phase returns 7 bytes:

Byte 1: ST0 - Status register 0 (See ST0 table).

Byte 2: ST1 - Status register 1 (See ST1 table).

Byte 3: ST2 - Status register 2 (See ST2 table).

Byte 4: Final Cylinder number.

Byte 5: Final head compared.

Byte 6: Final Sector compared.

Byte 7: Number of bytes compared.

Scan Low or Equal

Command Phase: 9 bytes.

Byte 1: Command Code.

Bit(s) Function (Action ... { 1 / 0 })

7 (MT) Multi-Track {Enable/Disable}.
6 (FM) Select {MFM/FM} (Single/Dobule density) Mode.
5 (SK) Enable Skip deleted data address mark.
4 1.
3 1.
2 0.
1 0.
0 1.

Byte 2: Head and Unit select.

Bit(s) Function

7-3 Don't Care.
2 HD - Head Select (0 or 1).
1 US1.
0 US0 - Unit Select (0 or 1).

Byte 3: Cylinder Number (0-76).

Byte 4: Head Number (as specified in the ID field).

Byte 5: Sector to be compared.

Byte 6: Number of bytes per sector.

Byte 7: EOT - Final sector number on track.

Byte 8: GPL - Length of Gap 3.

Byte 9: STP - Step Factor: 1 = Contiguous: 2 = Alternate Sectors.

During execution data from the CPU memory is compared with data from the FDD.

The Result phase returns 7 bytes:

Byte 1: ST0 - Status register 0 (See ST0 table).

Byte 2: ST1 - Status register 1 (See ST1 table).

Byte 3: ST2 - Status register 2 (See ST2 table).

Byte 4: Final Cylinder number.

Byte 5: Final head compared.

Byte 6: Final Sector compared.

Byte 7: Number of bytes compared.

Scan High or Equal

Command Phase: 9 bytes.

Byte 1: Command Code.

Bit(s) Function (Action ... { 1 / 0 })

7 (MT) Multi-Track {Enable/Disable}.
6 (FM) Select {MFM/FM} (Single/Dobule density) Mode.
5 (SK) Enable Skip deleted data address mark.
4 1.
3 1.
2 1.
1 0.
0 1.

Byte 2: Head and Unit select.

Bit(s) Function

7-3 Don't Care.
2 HD - Head Select (0 or 1).
1 US1.
0 US0 - Unit Select (0 or 1).

Byte 3: Cylinder Number (0-76).

Byte 4: Head Number (as specified in the ID field).

Byte 5: Sector to be compared.

Byte 6: Number of bytes per sector.Byte 7: EOT - Final sector number on track.

Byte 8: GPL - Length of Gap 3.

Byte 9: STP - Step Factor: 1 = Contiguous: 2 = Alternate Sectors.

During execution data from the CPU memory is compared with data from the FDD.

The Result phase returns 7 bytes:

Byte 1: ST0 - Status register 0 (See ST0 table).

Byte 2: ST1 - Status register 1 (See ST1 table).

Byte 3: ST2 - Status register 2 (See ST2 table).

Byte 4: Final Cylinder number.

Byte 5: Final head compared.

Byte 6: Final Sector compared.

Byte 7: Number of bytes compared.

Recalibrate

Command Phase: 2 bytes.

Byte 1: Command Code.

Bit(s) Function (Action ... { 1 / 0 })

7 0.
6 0.
5 0.
4 0.
3 0.
2 1.
1 1.
0 1.

Byte 2: Head and Unit select.

Bit(s) Function

7-3 Don't Care.
2 0.
1 US1.
0 US0 - Unit Select (0 or 1).

During execution phase, the Head is retracted to Track zero.

No status information is returned during the result phase.

Sense Interrupt Status

Command Phase: 1 byte.

Byte 1: Command Code = 08h.

The Result phase returns two bytes:

Byte 1: ST0 - Status Register 0.

Byte 2: PCN - Present Cylinder Number.

Specify

Command Phase: 3 bytes.

Byte 1: Command Code = 03h.

Byte 2: SRT/HUT - Step Rate Time (4 MS bits - in 1 ms increments)/Head Unload Time (4 LS bits - in 16
ms increments).

Byte 3: HLT/ND - Head Load Time (Bits 1 to 7 - in 2 ms increments)/Non-DMA Mode (Bit 0).

Seek

Command Phase: 3 bytes.

Byte 1: Command Code = 0Fh.

Byte 2: Head and Unit select.

Bit(s) Function

7-3 Don't Care.
2 HD - Head Number.
1 US1.
0 US0 - Unit Select (0 or 1).

Byte 3: New Cylinder Number.

During execution phase, the Head is positioned to the specified Cylinder.

No status information is returned during the result phase.

Sense Drive Status

Command Phase: 2 bytes.

Byte 1: Command Code = 04h.

Byte 2: Head and Unit select.

Bit(s) Function

Bit(s) Function

7-3 Don't Care.
2 0.
1 US1.
0 US0 - Unit Select (0 or 1).

Result phase: 1 byte.

Byte 1: ST3 - Status Register 3.

Invalid Opcodes

All command codes not listed above are considered invalid. When an invalid code is encountered the
FDC returns the ST0 register with the MS bit (Invalid Opcode bit) set.

Section 2 Index Appendices

Section 3 Site Index Book Index

Appendix 1: Mouse Software Interfaces
The operating system supplied with your PC1640, MS-DOS 3.2, supports a set of Mouse functions which allow a program to access the
mouse and control the cursor. These functions can be called from within your application programs by using the software interfaces described
below.

The mouse functions described in this appendix are as follows.

Number Function

0 Mouse Initialisation
1 Show Cursor
2 Hide Cursor
3 Get Mouse Position and Button Status
4 Set Mouse Cursor Position
5 Get Button Press Information
6 Get Button Release Information
7 Set Minimum and Maximum X-Cursor Position
8 Set Minimum and Maximum Y-Cursor Position
9 Set Graphics Cursor Block
10 Set Text Cursor
11 Read Mouse Motion Counters
12 Set User Defined Subroutine Input Mask
13 Light Pen Emulation Mode On
14 Light Pen Emulation Mode Off
15 Set Mickey/Pixel Ratio
16 Conditional Off
19 Set Double Speed Threshold

The program MOUSE.COM must be loaded by either typing "MOUSE" at the keyboard or by having a "MOUSE" line in your AUTOEXEC.BAT.

When MOUSE.COM is loaded, it performs an initialisation process and installs the mouse driver software into the system. Once installed, the
mouse driver remains permanently resident until the next time you bootstrap your computer. After successfully completing initialisation, the
following message is output to the display:

"--- Installing Mouse Device Driver V5.00 ---"

If the mouse driver fails to load you will get one of the two following messages:

1. "MOUSE: Mouse Driver already installed."
Because either you've previously installed MOUSE.COM or there's some other resident utility which has chained itself onto the vector
needed by MOUSE.COM's resident driver.

2. "MOUSE: Amstrad Mouse not found."
Because either there's a hardware fault or your hardware isn't an Amstrad PC.

During initialisation, the following actions take place:

1. The hardware ticker routine residing at software interrupt 8 which is invoked every 54ms is replaced by a Mouse Ticker routine that is
invoked every 18ms.

2. Counter 0 of the 8253 interrupt controller is re-programmed so that it produces an interrupt every 18ms rather than every 54ms. A word of
caution here, programs which chain themselves into the ticker interrupt may get 1overly excited1 by the unusually high interrupt rate.

3. The Mouse Buttons Interrupt routine is inserted into the Mouse Buttons Interrupt vector (software interrupt 6).
4. The Amstrad PC Mouse X and Y movement registers are initialised to zero. The Mouse Buttons are both marked as being released.
5. The Non Volatile RAM is read to determine the X & Y Scaling factors, which are to be used during cursor key generation for mouse

movement in text mode.
6. The Mouse driver is initialised to be in Text Mode.

The general procedure for making an assembly language program call to the mouse function driver program is:

1. Load the specified register parameters.
2. Execute software interrupt 51 (033h).

The cursor coordinates required for the various function calls are in the form of X-Cursor (horizontal) and Y-Cursor (vertical) values. The range
of the X-Cursor is always the full 0 to 639 points of the high resolution graphics screen and the Y-Cursor ranges from 0 to 199. This coordinate
system defines the "virtual" screen and when in modes with less resolution than 640 points then the least significant bits of the X-Cursor are

ignored. In 4-Colour (320 x 200) graphics only even values are significant while in 80 column text mode only every eighth position is valid and
in 40 column text modes only every 16th position is valid. Supplied values are rounded to the nearest values permitted for the current screen
mode.

The standard unit of mouse motion is called the "mickey" and is equal to approximately 1/200 of an inch. See Mouse function 15 which sets
the mickey to pixel ratios.

In Text Mode, mouse movement will cause cursor key tokens to be inserted into the keyboard buffer. The scaling factors read from the NVR
during initialisation are used to determine how many units of mouse movement are to be sensed before a single cursor key token is inserted
into the keyboard buffer. Invoking any Mouse Function except Function 0 or Function 2 will disable this extra mode (i.e. cursor movement
tokens are not generated). Invoking Function 0 (Initialisation) enables this extra mode (i.e. cursor tokens are generated) and invoking Function
2 (Hide Cursor) does not change the current mode.

In Text Mode, the mouse buttons interrupt routine (interrupt 6) translates the Left and Right mouse buttons into the appropriate scan codes
which are held in NVR bytes 29-30 (for Left) and 31-32 (for Right). The default NVR value for these scan codes is the ignore code (all F's). The
NVRPATCH programs can be used to set the mouse button codes to handy values such as CR and ESC.

In Graphics Mode, the mouse buttons interrupt routine translates the Right mouse button to the shift key token, and the Left button is passed
through as a mouse event to the user defined subroutine. (See mouse function 12.)

Function 0: Mouse Initialisation.

This function initialises the mouse driver and returns the current status of the mouse hardware and software.

CPU registers are used as follows:

Entry:
AX = 0

Exit:
AX = Mouse Status
BX = Number of Buttons.

All Flags and other registers preserved.

Since the mouse hardware is verified by power-up testing the driver always returns a mouse status of true (-1). If the mouse driver is not
resident then AX is returned as false (0).

The mouse driver parameters are reset to the following values:

Parameter Value

Cursor Flag Hidden (-1)
Cursor Position Center Screen
Graphics Cursor Arrow
Hot Spot -1, -1
Text Cursor Inverting box
User Defined Call Mask Zeros
Light Pen Emulation Mode Enabled
Mickey to X-Pixel Ratio 8
Mickey to Y-Pixel Ratio 16
Min/Max X-Cursor Position 0/639
Min/Max Y-Cursor Position 0/199

The mouse X and Y hardware counters are reset and a number of internal software counters are zeroed.

The mouse driver is initialised to be in Text Mode (and cursor tokens are generated in response to mouse motion).

Function 1: Show Cursor.

This function increments the Cursor Flag and, if the flag is zero, the cursor display is enabled.

CPU registers are used as follows:

Entry:
AX = 1.

Exit:
All flags and registers preserved.

Function 2: Hide Cursor.

This function decrements the Cursor Flag.

CPU registers are used as follows:

Entry:
AX = 2.

Exit:
All flags and registers preserved.

Function 3: Get Mouse Position and Button Status.

This function returns the state of the Left and Right buttons and the current cursor position.

CPU registers are used as follows:

Entry:
AX = 3.

Exit:
BX = Button status.
CX = X-Cursor Position.
DX = Y-Cursor Position.
All flags and other registers preserved.

The Button Status word returned in BX is a single integer value. Bits 0 and 1 represent the Left and Right buttons, respectively. A bit is set if a
button is down and clear if it is up.

Function 4: Set Mouse Cursor.

This function sets the cursor to the specified X-Cursor and Y-Cursor positions. The values must in range of the virtual screen. If the screen is
not in high resolution mode, the values are rounded to the nearest values permitted for the current screen mode.

CPU registers are used as follows:

Entry:
AX = 4.
CX = X-Cursor position.
DX = Y-Cursor position.

Exit:
All flags and registers preserved.

Function 5: Get Button Press Information.

This function returns the current button status, a count of button presses since last call to this function, and the X-Cursor and Y-Cursor
positions at the last button press.

CPU registers are used as follows:

Entry:
AX = 5
BX = Button Number (0=Left/1=Right).

Exit:
AX = Button status.
BX = Count of Presses since last call (0-32k).
CX = X-Cursor at last press.
DX = Y-Cursor at last press.
All flags and other registers preserved.

Function 6: Get Button Release Information.

This function returns the current button status, a count of button releases since last call to this function, and the X-Cursor and Y-Cursor
positions at the last button release.

CPU registers are used as follows:

Entry:
AX = 6.
BX = Button Number (0=Left/1=Right).

Exit:
AX = Button status.

BX = Count of releases since last call (0-32k).
CX = X-Cursor at last release.
DX = Y-Cursor at last release.
All flags and other registers preserved.

Function 7: Set Minimum and Maximum X-Cursor Position.

This function sets the minimum and maximum X-Cursor position. Subsequent cursor motion is restricted to the specified range.

CPU registers are used as follows:

Entry:
AX = 7.
CX = Minimum X-Cursor Position.
DX = Maximum X-Cursor Position.

Exit:
All flags and registers preserved.

If the cursor is outside the area when the call is made, it is set to just inside the area. If Minimum is greater than Maximum, the two values are
exchanged.

Function 8: Set Minimum and Maximum Y-Cursor Position.

This function sets the minimum and maximum Y-Cursor position. Subsequent cursor motion is restricted to the specified range.

CPU registers are used as follows:

Entry:
AX = 8.
CX = Minimum Y-Cursor Position.
DX = Maximum Y-Cursor Position.

Exit:
All flags and registers preserved.

If the cursor is outside the area when the call is made, it is set to just inside the area. if Minimum is greater than Maximum, the two values are
exchanged.

Function 9: Set Graphics Cursor Block.

This function defines the shape, colour, and center of the cursor for graphics mode.

CPU registers are used as follows:

Entry:
AX = 9.
BX = X-Cursor Hot Spot.
CX = Y-Cursor Hot Spot.
DX = Pointer to Screen and Cursor Masks.
ES = Segment Address of Screen and Cursor Masks.

Exit:
All flags and registers preserved.

The Hot Spot is a point relative to the upper left corner of the cursor block used to determine the cursor coordinates. Both coordinates must be
in the range of -16 to +16.

The values in the screen mask and cursor mask are used to build the cursor shape and colour. The ES register contains the segment
address of the screen and cursor mask array and DX is the offset to be applied to the ES register.

The screen and cursor masks are two 16- by 16-bit arrays arranged contiguously in memory. The screen mask determines whether the cursor
pixel is part of the shape or part of the background. The cursor mask determines how the pixel under the cursor contributes to the colour of the
cursor. To create the cursor, the mouse software first logically ANDs the screen mask with the 256 bits of data that define the pixels under the
cursor. Then, it logically XORs the cursor mask with the result of the AND operation. The following truth table shows the relationship between
the screen mask, the cursor mask, and the resultant screen memory.

The values in the screen mask and cursor mask are used to build the cursor shape and colour. The ES register contains the segment
address of the screen and cursor mask array and DX is the offset to be applied to the ES register.

The screen and cursor masks are two 16- by 16-bit arrays arranged contiguously in memory. The screen mask determines whether the cursor
pixel is part of the shape or part of the background. The cursor mask determines how the pixel under the cursor contributes to the colour of the
cursor. To create the cursor, the mouse software first logically ANDs the screen mask with the 256 bits of data that define the pixels under the

cursor. Then, it logically XORs the cursor mask with the result of the AND operation. The following truth table shows the relationship between
the screen mask, the cursor mask, and the resultant screen memory.

The values in the screen mask and cursor mask are used to build the cursor shape and colour. The ES register contains the segment
address of the screen and cursor mask array and DX is the offset to be applied to the ES register.

The screen and cursor masks are two 16- by 16-bit arrays arranged contiguously in memory. The screen mask determines whether the cursor
pixel is part of the shape or part of the background. The cursor mask determines how the pixel under the cursor contributes to the colour of the
cursor. To create the cursor, the mouse software first logically ANDs the screen mask with the 256 bits of data that define the pixels under the
cursor. Then, it logically XORs the cursor mask with the result of the AND operation. The following truth table shows the relationship between
the screen mask, the cursor mask, and the resultant screen memory.

The values in the screen mask and cursor mask are used to build the cursor shape and colour. The ES register contains the segment
address of the screen and cursor mask array and DX is the offset to be applied to the ES register.

The screen and cursor masks are two 16- by 16-bit arrays arranged contiguously in memory. The screen mask determines whether the cursor
pixel is part of the shape or part of the background. The cursor mask determines how the pixel under the cursor contributes to the colour of the
cursor. To create the cursor, the mouse software first logically ANDs the screen mask with the 256 bits of data that define the pixels under the
cursor. Then, it logically XORs the cursor mask with the result of the AND operation. The following truth table shows the relationship between
the screen mask, the cursor mask, and the resultant screen memory.

Screen Mask Bit Cursor Mask Bit Resultant Screen Bit

0 0 0
0 1 1
1 0 Unchanged
1 1 Inverted

In 640x200 or 640x350 resolution graphics modes each bit in the screen and cursor masks logically maps to one bit on the screen. In
(320x200) graphics modes each pair of bits correspond to one pixel.

Function 10: Set Text Cursor.

This function selects the software or hardware text cursor and defines the attributes of the selected cursor.

CPU registers are used as follows:

Entry:
AX = 10.
BX = Cursor Type (0=Software/1=Hardware).
CX = Screen Mask/Scan Line Start.
DX = Cursor Mask/Scan Line Stop.

Exit:
All flags and registers preserved.

If the software text cursor is selected CX & DX contain Screen and Cursor masks. The 16-bit masks are ANDed and XORed in the same
manner as the graphics cursor operation and operate upon the character and attributes bytes of the character position of the cursor.

In both 40-column and 80-column text modes the 16-bits of screen data for each character take the following form:

Bits: 15 14..12 11 10..8 7........0

Contents: B Backgnd I Foregnd Character

Where:

B
Blink Bit.

Backgnd
Three bit (RGB) pattern specifying background colour.

I
Intensity bit.

Foregnd
Three bit (RGB) pattern specifying foreground colour.

Refer to section 1.11 for the attribute byte details.

The screen and cursor masks are divided into the same fields as shown above so that the value of the masks defines the new attributes of
the character when the cursor is over it. For example a screen mask of 077FFh and a cursor mask of 07700h would invert the foreground and
background colours.

If the hardware cursor is selected CX & DX define the first and last scan line in the cursor shown on the screen.

Function 11: Read Mouse Motion Counters.

This function returns the horizontal and vertical mickey count since the last call to this function. CPU registers are used as follows:

Entry:
AX = 11.

Exit:
CX = X-Count.
DX = Y-Count.
All flags and other registers preserved.

The "mickey" is the standard unit mouse motion equal to approximately 1/200 of an inch. See Mouse function 15 which sets the mickey to pixel
ratios.

Function 12: Set User Defined Subroutine Input Mask.

This function sets the call mask and subroutine address for the mouse interrupts. CPU registers are used as follows:

Entry:
AX = 12.
CX = Call Event Mask.
DX = Address Offset to Subroutine.
ES = Segment address of Subroutine.

All flags and other registers preserved.

The mouse driver uses the ticker interrupt to poll the mouse hardware (at approx. 55 times per second) and when one of the events specified
in the call event mask is noted your subroutine is called. The layout of the call event mask is:

Bit Event (1=Enabled)

15-5 Unused.
4 Right Button Released. (will never occur).
3 Right Button Pressed. (will never occur).
2 Left Button Released.
1 Left Button Pressed.
0 Cursor Position Changed.

Note that calling mouse function zero (Initialisation) disables all events so that function 12 must be called again.

When calling your subroutine the CPU registers are loaded as follows:

AX = Event bit (as per the above table).
BX = Button State (BL = Left Button / BH = Right Button - will never occur).
CX = X-Cursor.
DX = Y-Cursor.

Function 13: Light Pen Emulation Mode On.

This function enables the light pen emulation by the mouse. CPU registers are used as follows:

Entry:
AX = 13.

Exit:
All flags and registers preserved.

With the Light Pen Emulation on, the VDU I/O software interrupt (Int 16) returns mouse identification vice the normal light pen address
information (See VDU Sub-Function 4).

Function 14: Light Pen Emulation Mode Off.

This function disables the light pen emulation by the mouse. CPU registers are used as follows:

Entry:
AX = 14.

Exit:
All flags and registers preserved.

Function 15: Set Mickey/Pixel Ratio.

This function sets the mickey to pixel ratio for mouse motion. CPU registers are used as follows:

Entry:
AX = 15.
CX = X-Mickey/Pixel Ratio.
DX = Y-Mickey/Pixel Ratio.

Exit:
All flags and registers preserved.

The X- and Y- ratios specify a number of mickeys per 8 pixels. The values must be in the range of 1 to 32767.

With a setting of 16 mickeys per 8 pixels horizontally it takes about 6.4 inches of mouse movement to move the cursor across the screen (640
pixels). With the same 16 mickeys per 8 pixels vertically it takes about 2 inches of travel to move the cursor the full vertical deflection (200
pixels).

Function 16: Conditional Off.

This function defines a region on the screen for updating. CPU registers are used as follows:

Entry:
AX = 16.
CX = Upper X-Screen Coordinate.
DX = Upper Y-Screen Coordinate.
SI = Lower X-Screen Coordinate.
DI = Lower Y-Screen Coordinate.

Exit:
All flags and registers preserved.

The mouse cursor is hidden while the screen is being updated and a call to function 1 is needed to show the cursor again.

Function 16 is similar to function 2 (Hide Cursor) bit is for advanced applications which require quicker screen updates.

Function 19: Set Double Speed Threshold.

This function defines the threshold speed for doubling the cursor's motion on the screen. CPU registers are used as follows:

Entry:
AX = 19.
DX = Threshold Speed in Mickeys/Second.

This function makes it easier to point at images widely separate on the screen.

A threshold value of zero sets a value of 64 mickets.second. Setting a large value (such as 32767) disables the double speed threshold.

Appendix 2: MS-DOS System Configuration
The MS-DOS operating system allows for a number of installation specific configuration options during the system startup progress through
the use of a file called CONFIG.SYS when it is found in the root directory of the startup disk. These configuration options include the following
commands:

Command Description

BREAK Extended BREAK checking (Ctrl-C).
BUFFERS Number of sector buffers.
COUNTRY Country Specific parameter selection.
DEVICE Device driver installations.
DRIVPARM Override the drive parameters for a logical drive.
FCBS Number of files open by file control blocks.
FILES Maximum number of files open concurrently.
LASTDRIVE Maximum drive letter allowable.
SHELL Top level command processor specification.
STACKS Override the default DOS stack resources.

The CONFIG.SYS can be created with any text editor and the simple screen editor RPED is ideal for this purpose.

2.1 BREAK Command

This command enables the MS-DOS extended break checking to be either set or reset. Normally, MS-DOS checks to see if CTRL-C has been
typed while it is reading from the keyboard, writing to the screen or a printer. Setting Break to 'on' allows CTRL-C checking to be extended to
other functions such as disk reads or writes. The syntax of the BREAK command is:

BREAK=[ON]
or

BREAK=[OFF]

If no field is specified then OFF is assumed (as the default value).

2.2 BUFFERS Command

This command allows you to specify the number of buffers that MS-DOS allocates when it starts up. A disk buffer is a block of memory where
MS-DOS holds data being read from or written to a disk when the amount of data is not an exact multiple of sector size.

The syntax of the BUFFERS command is:

BUFFERS=n

Where 'n' is a number between 2 and 255. If the BUFFERS command is not used then MS-DOS defaults to 2 buffers. The number of buffers
remains in effect after bootstrap until the machine is switched off or bootstrapped again. For best performance for standard applications
environments (word processors, spreadsheets, etc.) a buffers allocation between 10 and 20 is recommended. If you tend to use many
subdirectories then an allocation upwards to 30 may be better. But since buffers use the system available memory, there may have to be a
compromise between memory usage and performance. Buffers allocated beyond 40 serves no useful purpose. Refer to the Users's Manuals
for you applications if in douby about required buffers for particular applications programs.

2.3 Country Command

The country command is used to select the country dependent information as shown in appendix 3.

The syntax of the country command is:

COUNTRY=nnn

Where 'nnn' is the 3-digit country (Num) code from Appendix 3. Note that only the information in table is effected and other country dependent
factors such as the language links, N-Utility setup, KEYBxx, and other national variant disks effect the total country dependent environment.

2.4 DEVICE Command

This command installs the device driver in the specified pathname to the system list.

The syntax of the DEVICE command is:

DEVICE=[drive:]<pathname>

The file specified is loaded and given control. The driver may then perform the necessary steps to configure itself and the system for its
operation. See the MS-DOS Technical Reference Manual for information on how to create your own device driver.

Your MS-DOS disk (Disk 1) contains two installable device drivers, DRIVER.SYS, and RAMDRIVE.SYS which can be used for variable device
configurations.

If you plan to use the ANSI escape sequences described in the PC1640 Users Manual, you would need to include the following command in
your CONFIG.SYS file:

DEVICE=ANSI.SYS

This command causes MS-DOS to replace all keyboard input and screen output support with the ANSI escape sequences. Refer to the
PC1640 User Instructions (Book 1) Appendix IV for ANSI escape sequence reference information.

2.4.1 DRIVER.SYS>

DRIVER.SYS is an installable device driver that supports external drives. To install DRIVER.SYS, include the following command in your
CONFIG.SYS file:

DEVICE=DRIVER.SYS /D:dd [/C] [/F:ff] [/H:hh] [/N] [/S:ss] [/T:tt]

Where:

/D:dd is drive number (0-127: Floppy drives, 128-255 Hard drives)

and optionally:

/C indicates changeline (doorlock) support required.
/F:ff indicates the form factor where:

0 = 5.25 inch floppy diskette, 320/360 K bytes.
1 = 5.25 inch floppy diskette, 1.2 M bytes.
2 = 3.5 inch floppy diskette, 720 K bytes.
3 = 8 inch floppy diskette, Single Density.
4 = 8 inch floppy diskette, Double Density.
5 = Hard Disk.
6 = Tape Drive.
7 = 3.5 inch floppy diskette, 1.44 M bytes.

/H:hh is the maximum head number (1-99).
/N indicates non-removable block device.
/S:ss is the number of sectors per track (1-99).
/T:tt is the number of tracks per side (1-999).

2.4.2 RAMDRIVE.SYS

RAMDRIVE.SYS is an installable device driver which enables the usage of a portion of the computer's memory as though it were a disk drive.
This area of memory is referred to as a RAM disk or a virtual disk.

If you have extended memory installed starting at the 1MB boundary or if you have an extended memory which meets the LIM [Lotus(R)/Intel(R)
/Microsoft(R)] Expanded Memory Specification, you can use this memory for one or more RAM disks. Otherwise RAMDRIVE.SYS locates RAM
drives in low memory.

To install RAMDRIVE.SYS, include the following command in your CONFIG.SYS file:

DEVICE=RAMDRIVE.SYS [bbbb] [ssss] [dddd] [/A]

Where:

bbbb is disk size in kilobytes. Default is 64 and minimum is 16, (or NVR to use NVR value).
ssss is the sector size. The values 128, 256, 512, and 1024 are allowed. Default is 128.
dddd is the number of root directory entries. The default is 64, the minimum value is 4 and the maximum is 1024.
/A indicates that an extended memory board which meets the LIM Expanded Memory Specification for a RAM drive is in use. If this switch
is used, the /E switch cannot be used.

There is an additional parameter for this driver which applies to 80286 style CPU architecture with memory above the 1M byte range. This
parameter is as follows:

/E indicates that extended memory (above 1MB) is to be used. If this switch is used, the /A switch cannot be used.

2.5 DRIVPARM Command

The DRIVPARM command allows overriding of the device parameters for a specific logical drive.

The syntax is:

DRIVPARM= /D:dd [/F:ff /T:tt /S:ss /N /C /H:hh]

Where:

/D:dd is drive number (0-255). (0=A, 1=B, 2=C ...)

and optionally:

/T:tt is the number of tracks per side (1-999).
/S:ss is the number of sectors per track (1-99).
/H:hh is the maximum head number (1-99).
/C indicates changeline (doorlock) support required.
/N indicates non-removable block device.
/F:ff indicates the form factor where:

0 = 5.25 inch floppy diskette, 320/360 K bytes.
1 = 5.25 inch floppy diskette, 1.2 M bytes.
2 = 3.5 inch floppy diskette, 720 K bytes.
3 = 8 inch floppy diskette, Single Density.
4 = 8 inch floppy diskette, Double Density.
5 = Hard Disk.

6 = Tape Drive.
7 = 3.5 inch floppy diskette, 1.44 M bytes.

This command allows the overriding of default system parameters for a particular logical drive. This information would be used by the
commands which create new diskettes (such as FORMAT and COPY) when writing out the directory and FAT (File Allocation Table)
information. For any physical device which is read the information in the FAT ID is used when determining device characteristics for floppy
disks, hard disks and tape drives.

If no form factor (/F:) is specified then a value of 2 is assumed (720K, 3.5 inch diskette).

2.6 FCBS Command

The FCBS command allows you to specify the number of file control blocks available to the system and consequently the number of files
which can be opened at any one time.

The syntax of the FCBs is:

FCBS=<x>,<y>

Where <x> is the number of FCBs (in the range of 1 to 255) to allocate and <y> is the number of FCBs protected from closure when a program
tries to open more than <x> files. The first <y> files opened will be protected. MS-DOS selects the least recently used (non-protected) FCB
when it must automatically close a file.

If the FCBS command is not used MS-DOS defaults <x> and <y> to 4 and 0 respectively. It is an error to set <y> greater than <x>

2.7 FILES Command

The FILES command specifies the maximum number of file handles that can concurrently be opened. When a program opens a file or a
device it is assigned an identifier or "handle" which can be used by that program in referring to the file.

The syntax of the FILES command is:

FILES=n

Where 'n' is the number of handles in the range of 8 to 255. When no FILES command is used MS-DOS assumes a default value of 8. Any
value higher than 20 serves no useful function.

2.8 LASTDRIVE Command

The LASTDRIVE command is used to set the maximum drive letter which MS-DOS will accept.

The syntax of the LASTDRIVE command is:

LASTDRIVE=d

Where 'd' is any letter from A to Z (and is case insensitive). When the drive letter is lower than the actual physical drives then MS-DOS ignores
the LASTDRIVE specification and uses the default value which is the letter 'E'.

2.9 SHELL Command

The SHELL command is used to specify an alternate top-level command processor in place of the standard COMMAND.COM file.

The syntax of the SHELL command is:

SHELL=[drive:]pathname [param1 [parm2 ..[paramn]]]

This command is used in conjunction with major software packages which furnish their own command processors. The MS-DOS technical
manual contains information on developing command processors.

2.10 STACKS Command

The Stacks command allows you to override the default DOS stack resource parameters. For each hardware interrupt which occurs, MS-DOS
allocates a stack to it from the pool of available stacks. When the interrupt process is completed, MS-DOS returns the stack to the available
stack pool.

The syntax of the STACKS command is:

STACKS=<number of stacks>,<stack size in bytes>

If there is no STACKS= command in your CONFIG.SYS file then MS-DOS allocates default stack resources equivalent to the command
STACKS=9,128. This however may not be sufficient if you are using multiple interrupting devices (such as LANs, 8087 NDPs, or Hard Disks)
and under these circumstances you may experience a number of stack related messages such as "Internal Stack Failure" (most

predominantly) or even "Divide Overflow". When messages such as this occur it is advisable to try increasing the stacks, bearing in mind that
stacks do use up available system memory in the same way that buffers and FCBs do. The number of stacks allowable is from 8 to 64 and
the stack size parameter may vary from 32 to 512 bytes.

Appendix 3: Country Dependent Information for MS-DOS 3.2

Country Num DtF DtS TmS TmF CSm CFt CSd ThS DeS DlS

Australia 061 1 - : 1 $ 0 2 , . ,
Belgium 032 1 / : 1 F 3 2 , ;
Canada 002 2 - : 1 $ 3 2 , ;
Denmark 045 1 / . 1 DKR 3 2 . , ;
Finland 358 1 - : 1 MK 3 2 , ;
France 033 1 / : 1 F 3 2 , ;
Germany 049 1 . . 1 DM 0 2 . , ;
Italy 039 1 / : 1 Lit 1 0 . , ;
Israel 972 1 / : 1 ö 2 2 , . ,
Middle East 785 1 / : 1 $ 3 3 . , ;
Netherlands 031 1 - : 1 ƒ 0 2 . , ;
Norway 047 1 / . 1 KR 2 2 . , ;
Portugal 351 1 / : 1 $ 4 2 . , ;
Spain 034 1 / : 1 Pt 3 2 . , ;
Sweden 046 2 - . 1 SEK 2 2 . , ;
Switzerland 041 1 . . 1 Fr 2 2 , . ,
United Kingdom 044 1 - : 1 £ 0 2 , . ,
United States 001 0 - : 0 $ 0 2 , . ,

Table Columns:

Num =Country Number Code.
DtF =Date Format. (0 = U.S. M/D/Y, 1=EURO D/M/Y, 2 = JAPAN Y/M/D)
DtS =Date Separator.
TmS =Time Separator.
TmF =Time Format. (0=12-hour clock, 1=24-hour clock)
CSm =Currency Symbol.
CFt =Currency Format. (Bit 0: 0 = Currency symbol Precedes/1=Follows Field, Bits 1 & 2: Number of spaces between Value & Symbol)
CSd =Number of significant decimal digits in currency.
ThS =Thousands Separator.
DeS =Decimal Separator.
DlS =Data List Separator.

Appendix 4: RS232C Connections
For a complete understanding of the connections required between the RS232C and the outside world, it is important to realize that all
devices with a serial interface can be classified as either a modem or as a terminal. Modems are merely a way of extending the length of the
connection (often via a terminal wire) between two terminals. Fig 1 (below) shows a simplified, idealised terminal to terminal connection
through modems.

IDEALISED TERMINAL TO TERMINAL CONNECTION

Fig 1

The standard connector used for serial interfaces has 25 pins although only up to seven are required in most cases. When connecting to a
modem a 'one-to-one' cable is used, i.e. pin 1 to pin 1, pin 2 to pin 2, ... pin 25 to pin 25. Assuming such cables are in use, data is transferred

as follows:

Following the signal path from left to right (in Fig 2), characters from the keyboard are sent as serial data patterns out of pin 2 of the left-hand
terminal, to pin 2 of the modem (the connection marked 'transmit data'). The left-hand modem sends the characters via the telephone line, to
the right hand modem. The characters are received pin 3 of the right hand modem (the connection marked 'receive data') which sends them to
pin 3 of the right-hand terminal. On receipt of the characters, the right-hand terminal displays them on the screen.

Notice how the names of the connections 'transmit data' and 'receive data' are expressed from the view point of the terminals and not the
modems.

The data path from left to right just described, is exactly matched by a data path from right to left which uses the same numbered connections,
i.e. pin 2 from the right-hand terminal to its modem (transmitting), and then to pin 3 of the left-hand (receiving) modem to the terminal. This
arrangement is perfectly symmetrical, and there is no confusion over who is using which pin number and for what direction of data transfer.

Fig 2

Problems of definition arise, howeve, when we wish to connect two terminals together locally, without the intervening pair of modems. We
cannot connect pin 2 to pin 2 because both keyboard will be transmitting head-on and neither screen is connected to anyone who is sending.
The obvious solution is to cross over pins 2 and 3 so that the transmit pin of each terminal is connected to the receive pin of the other. A cable
containing such a cross-over connection is known as a 'Null-modem' cable because of the way in which it replaces the pair of back to back
modems.

The earth pin (pin 7) is still common to both terminals using this arrangement.

Fig 3

Naturally, the Amstrad PC1640 with its RS232C interface is considered a terminal, and therefore to connect to a modem (for example, to dial-
up a database) requires a simple one-to-one cable.

The Null-modem cable is required for connecting to other terminals. The sort of equipment we mean by terminals is: a second Amstrad
computer plus RS232C, a conventional Visual Display Unit (VDU), a printer with a serial interface, or any other serial interface device.

Fig 4

There is a point to be noted here: many manufacturers of devices such as desk-top computers wire up their serial interface (for VDU or a
Printer) as if it were a modem, not a terminal. This is in the belief that life will therefore be simpler because VDU's and printers can be
connected to that computer with one-to-one cables.

Fig 5

In a perfect world, it would be possible to identify which serial devices behave like modems and which ones behave like terminals by
examining the 'sex' of the 25-way connector - terminals should have a 'male' connector, and modems a 'female' connector. This is not,
unfortunately, as reliable a guide as it should be, as many manufacturers of terminals and printers equip them with 'female' connectors,
mostly for reasons of electrical safety.

If in doubt, the ultimate test is to examine the user manual and determine the function of PIN 2 - if the description includes the word
'TRANSMIT' then the equipment is wired as a terminal, and if it includes the word 'RECEIVE' then the equipment is wired as a modem.

Hardware Flow Control

The simplified connection described so far does not allow any control of the data flow. In practice, we often with the receiving device to have
control over the transmitting device, thus preventing the receiving device from being overwhelmed (where it is slower in using the input than
the rate at which the input is arriving). In addition, if the transmitting device has reason to mistrust the data which it is sending, there should be
some provision for it to disable the receiving device.

In the case of modem to terminal connection; when the terminal is able to transmit it activates pin 4 - the RTS pin (Request To Send). When
the modem is ready to receive input it activates pin 5 - the CTS pin (Clear To Send). The terminal will only send when CTS is activated. Thus
the modem can control the flow rate using CTS.

When the modem considers that the data which it is about to send is suitable, it activates pin 8 - the DCD pin (Data Carrier Detect). When the
terminal is ready to receive input it activates pin 20 - the DTR pin (Data Terminal Ready). The modem will only transmit when DTR is activated.
Thus the terminal can control flow rate using DTR.

There are two further signals which must be introduced here. One is on pin 22 - the Ring indicator, which simply allows the modem to tell the
terminal that the phone is ringing (at which point software in the terminal might be expected to wake up). The other signal is on pin 6 - DSR
(Data Set Ready). This signal is ignored by the receiving side of the RS232C; the modem will activate this signal at much the same time that it
activates DCD, and therefore no functionality is lost by ignoring DSR.

Fig 6

In the case of terminal-to-terminal conenctions, the Null-modem cable must be used with the additional connections to pins 2, 3, and 7 as
already discussed. The full Null-modem cable swaps pins 4 and 8 - the RTS/DCD 'I am happy to send' signals, and pins 20 and 5 - the
DTR/CTS 'busy' signals. To be on the safe side, pin 6 (DSR) is connected to pin 8 (DCD) in case that end of the cable is ever connected to a
terminal which is fussy and requires DSR as well as DCD.

Fig 7

There is a school of thought which says that a Null-modem cable, unlike the pair of modems it replaces, is ALWAYS 'happy to send'. Therefore
it is quite in order to generate DCD (and DSR) permanently. This is achieved by connecting them to the RTS at the same end of the cable,
rather than to the RTS at the other end of the cable.

Fig 8

Finally, if the transmission rate from one of the two terminals is known to be unstoppable (e.g. a person typing at the keyboard), or is so slow
and infrequent (e.g. the software handshake characters 'XON, XOFF' sent by the printer) that there is no danger of over-running the receiving
end, then it is permissible to permanently enable the transmission by linking pin 5 (CTS) to pin 4 (RTS), i.e. to always send if ready (at the
transmitting end of the cable). It may well be facilitated in any case, for the transmitting terminals to ignore the state of CTS under these
circumstances.

THE RECOMMEND TERMINAL CABLE

Fig 9

Appendix 5: Printer Lead (PL-2) Wiring Specification
Connectors.

1. Computer Centronics Parallel Interface connector is a 25-way, D-plug.
2. Printer Input connector is a 36-way, IEEE-488 plug.

Cable Wiring.

Line Name Computer Connector Printer Connector

-Strobe 1 1
Data Bit 0 2 2
Data Bit 1 3 3
Data Bit 2 4 4
Data Bit 3 5 5
Data Bit 4 6 6
Data Bit 5 7 7
Data Bit 6 8 8
Data Bit 7 9 9
-Ack 10 10
Busy 11 11
PO 12 12

Line Name Computer Connector Printer Connector

Select Out 13 13
-AutoFd 14 14
-Error 15 32
-Reset 16 31
-Select In 17 36
GND 18 19
GND 19 20
GND 20 21
GND 21 22
GND 22 23
GND 23 24
GND 24 25
GND 25 26
GND - 27
GND - 28
GND - 29
GND - 30
GND - 33
GND - 15
GND - 16
GND - 17
GND - 18
GND - 34
GND - 35

Appendix 6: PC1640 Power Usage
The following is a summary of the power supply requirements for the Amstrad PC1640.

Major Component +5 V + 12V -5 V - 12V

Main Board and keyboard 2.10a 0.15a 0.00a 0.10a
Floppy Disk Drive 0.40a 1.00a 0.00a 0.00a
Hard Disk 1.10a 0.80a 0.00a 0.00a
Expansion Slots 2.10a 0.15a 0.10a 0.15a

Total 5.70a 2.10a 0.10a 0.25a

Appendix 7: ROM Character Set

ENGLISH character set DANISH character set

PORTUGESE character set GREEK character set

Appendix 8: Keyboard Keycodes

Appendix 9: Keyboard Layouts

Appendix 10: THE LINKER PROGRAM (MS-LINK)

10.1 INTRODUCTION

In this appendix you will learn about MS-LINK. It is recommended that you read the entire appendix before you use MS-LINK.

The MS-DOS linker (called MS-LINK) is a program that:

1. Combines separately produced object modules into one relocatable load module - an executable (.EXE) program file which you can run.
2. Searches library files for definitions of unresolved external references.
3. Resolves external cross-references.
4. Produces a listing that shows both the resolution of external references and error messages.

10.2 Overview of MS-LINK

When you write a program, you write it in source code. This source code is passed through a compiler which produces object modules. The
object modules must be passed through the link process to produce machine language that the computer can understand directly. This
machine language is in the form required for running programs.

You may wish to link (combine) several programs and run them together. Each of your programs may refer to a symbol that is defined in
another object module. This reference is called an external reference.

MS-LINK combines several object modules into one relocatable load module, or Run file (called an .EXE or Executable file). As it combines
modules, MS-LINK can search several library files for definitions of any external references that are not defined in the object modules.

MS-LINK also produces a List file that shows external references resolved, and it also displays any error messages.

MS-LINK uses available memory as much as possible. When available memory is exhausted, MS-LINK creates a temporary disk file named
VM.TMP.

Figure 1 illustrates the various parts of the MS-LINK operation:

Figure 1. The MS-LINK Operation

10.3 Definitions you will need to know

Some of the terms used in this appendix are explained below to help you understand how MS-LINK works. Generally, if you are linking object
modules compiled from BASIC, Pascal, or a high-level language, you will not need to know these terms. However, if you are writing and
compiling programs in assembly language you will need to understand MS-LINK and the definitions of the memory divisions of MS DOS.

In MS DOS, memory can be divided into segments, classes and groups. Figure 2 illustrates these concepts.

Shaded area = a group (64K bytes addressable)

Figure 3. How Memory Is Divided

Example:

Segment Number Name Class

1 PROG.1 CODE
2 PROG.2 CODE
12 PROG.3 DATA

Note that segments 1, 2 and 12 have different segment names, and may or may not have the same segment class name. Segments 1, 2 and
12 form a group with a group address of the lowest address of segment 1 (ie., the lowest address in memory).

Each segment has a segment name and a class name from the first segment encountered to the last. All segments assigned to the same
class are loaded into memory contiguously.

During processing, MS-LINK references segments by their addresses in memory (where they are located). MS-LINK does this by finding
groups of segments.

A group is a collection of segments that fit within a 64K byte area of memory. The segments do not need to be contiguous to form a group (see
illustration). The address of any group is the lower address of the segments within that group. At link time, MS-LINK analyses the groups, then
references the segments by the address in memory fo that group. A program may consist of one or more groups.

If you are writing in assembly language, you may assign the group and class names in your program. In high-level languages (BASIC,
COBOL, FORTRAN, Pascal), the naming is done automatically by the compiler.

10.4 Files that MS-LINK uses

MS-LINK:

1. Works with one or more input files.
2. Produces two output files.
3. May create a temporary disk file.
4. May be directed to search up to eight library files.

For each type of file, the user may give a three-part file specification. The format for MS-LINK file specifications is the same as that of a disk
file:

[d:]<filename>[<.ext>)

where:

d:
is the drive designation. Permissible drive designations for MS-LINK are A: through O:. The colon is always required as part of the drive
designation.

filename
is any legal filename of one to eight characters.

10.4.1 Input file Extensions

If no filename extensions are given in the input (object) file specifications, MS-LINK will recognize the following extensions by default:

.OBJ
-- Object code file from assembly or compilation.

.LIB
-- Library file created for some product such as FORTRAN or C.

10.4.2 Output file Extensions

MS-Link appends the following default extensions to the output (Run and List) files:

.EXE
-- Run file. (may not be overriden)

.MAP
-- List file. (may be overridden)

10.4.3 VM.TMP (Temporary) File

MS-Link uses available memory for the link session. If the files to be linked create an output file that exceeds available memory, MS-LINK will
create a temporary file, name it VM.TMP, and put it in the disk in the default drive. If MS-LINK creates VM.TMP, it will display the message:

VM.TMP has been created.
Do not change diskette in drive, <d:>

Once this message has been displayed, you must not remove the disk from the default drive until the link session ends. if the disk is
removed, the operation of MS-LINK will be unpredictable, and MS-LINK might display the error message:

Unexpected end of file on VM.TMP

The contents of VM.TMP are written to the Run file. (The name of the file is written at the Run file prompt). VM.TMP is a working file only and is
deleted at the end of the linking session.

WARNING

Do not use VM.TMP as a filename for any file. If you have a file named VM.TMP on the default drive and MS-LINK requires the VM.TMP file, MS-
LINK will delete the VM.TMP already on disk and create a new VM.TMP. Thus the contents of the previous VM.TMP file will be lost.

10.5 How to start MS-LINK

MS-LINK requires two types of input: a command to start MS-LINK and responses to command prompts. In addition, seven switches control
MS-LINK features. Usually, you will type all the commands to MS-LINK on the terminal keyboard. As an option, answers to the command
prompts and any switches may be contained in a response file. Command characters can be used to assist you while giving commands to
MS-LINK.

MS-LINK may be started in any of three ways. The first method is to type the commands in response to individual prompts. In the second
method, you type all commands on the line used to start MS-LINK. To start MS-LINK by the third method, you must create a response file that
contains all the necessary commands and tell MS-LINK where that file is when you start MS-LINK.

Summary of Methods to start MS-LINK

Method 1 LINK prompted.
Method 2 LINK <filenames> [/switches]
Method 3 LINK <filespec>

10.5.1 Method 1: Prompts

To start MS-LINK with Method 1, type:

LINK

MS-LINK will be loaded into memory. MS-LINK will then display four text prompts that appear one at a time. You answer the prompts to
command MS-LINK to perform specific tasks.

At the end of each line, you may type one or more switches, preceded by the switch character, a forward slash (/)

The command prompts are summarised below and described in more detail in the "Command Prompts" section.

Object Modules [.OBJ]:
Input '.OBJ' files to be linked. They must be separated by blank spaces or plus signs (+). If a plus sign is the last character typed, the
prompt will reappear. There is no default; a response is required.

Run File [Object-file.EXE]:
Give filename for executable object code. The default is first-object-filename.EXE. (You cannot change the output extension.)

List File [Run-file.MAP]:
Give filename for listing. The default is RUN filename.

Libraries []:
List filenames to be searched, separated by blank spaces or plus signs (+). If a plus sign is the last character typed, the prompt will
reappear. The default is to search for default libraries in the object modules. (Extensions will be changed to .LIB.)

10.5.2 Method 2: Command Line

To start MS-LINK with Method 2, type all commands on one line. the entries following LINK are responses to the command prompts. The entry
fields for the different prompts must be separated by commas. Use the following syntax:

LINK <object-list>, <runfile>, <listfile>, <lib-list> [/switch...]

where :-

object-list is a list of object modules, separated by plus signs
runfile is the name of the file to receive the executable output
listfile is the name of the file to receive the listing.
lib -list is a list of library modules to be searched.

/switch refers to optional switches, which may be placed following any of the response entries (just before any of the commas or after the <lib-
list>, as shown.

To select the default for a field, simply type a second comma with no spaces between the two commas.

Example:

LINK FUN+TEXT+TABLE+CARE/P/M+FUNLIST,COBLIB.LIB

This command causes MS-LINK to be loaded, then the object modules FUN.OBJ, TEXT.OBJ, TABLE.OBJ, and CARE.OBJ are loaded. MS-
LINK then pauses (as a result of using the /P switch). MS-LINK links the object modules when you press any key, and produces a global
symbol map (the /M switch); defaults to FUN.EXE Run file; creates a List file named FUNLIST.MAP; and searches the library file COBLIB.LIB.

10.5.3 Method 3: Response File

To start MS-LINK with Method 3, type:

LINK @<filespec>

where: filespec is the name of a response file. A response file contains answers to MS-LINK prompts (shown in Method 1) and may also
contain any of the switches. When naming a response file, the use of filename extensions is optional. Method 3 permits the command that
starts MS-LINK to be entered from the keyboard or within a batch file without requiring you to take any further action.

To use this option, you must create a response file containing several lines of text, each of which is the response to an MS-LINK prompt. The
response must be in the same order as the MS-LINK prompts discussed in Method 1. If desired, a long response to the Object Modules: or
Libraries: prompt may be typed on several lines by using a plus sign (+) to continue the same response onto the next line.

Use switches and command characters in the response file the same way as they are used for responses typed on the terminal keyboard.

When the MS-LINK session begins, each prompt will be displayed in order with the responses from the response file. If the response file
does not contain answers for all the prompts, (in the form of filenames, the semicolon character or carriage returns), MS-LINK will display the
prompt which does not have a response, then wait for you to type a legal response. When a legal response has been typed, MS-LINK
continues the link session.

Example Response File:

FUN TEXT TABLE CARE
/PAUSE/MAP
FUNLIST
COBLIB.LIB

This response file tells MS-LINK to load the four object modules named FUN, TABLE and CARE. MS-LINK pauses before producing a public
symbol map to permit you to swap disks (see discussion under /PAUSE in the "Switches" section before using this feature). When you press

any key, the output files will be named FUN.EXE and FUNLIST.MAP. MS-LINK will search the library file COBLIB.LIB, and will use the default
settings for the switches.

10.6 COMMAND CHARACTERS

MS-LINK provides three command characters:

Plus sign

Use the plus sign (+) to separate entries and to extend the current line in response to the Object Modules: and Libraries: prompts. (A
blank space may be used to separate object modules.) To type a large number of responses (each may be very long), type a plus sign
followed by the [RETURN] key at the end of the line to extend it. If the plus sign is the last character typed before pressing the [RETURN]
key, MS-LINK will prompt you for more module names. When the prompt 'Object Modules:' or the prompt 'Libraries:' appears again,
continue to type responses. When all the modules to be linked and libraries to be searched have been input, be sure the response line
ends with the last module name and a [RETURN] and not a plus sign and [RETURN].

Example:

Object Modules [.OBJ]: FUN TEXT TABLE CARE <RETURN>
Object Modules [.OBJ]: FOO+FLIPPFLOP+JUNQUE <RETURN>
Object Modules [.OBJ]: CORSAIR <RETURN>

Semicolon (;) :

To select default responses to the remaining prompts, use a single semicolon (;) followed by a [RETURN] at any time after the first
prompt (Run file:). This feature saves time and overrides the need to press a series of [RETURN] keys.

Once the semicolon has been typed and entered (by pressing the [RETURN] key), you can no longer respond to any of the prompts for
that link session. Therefore, do not use the semicolon to skip some prompts. To skip prompts, use the [RETURN] key.

Example:

Object Modules [.OBJ]: FUN TEXT TABLE CARE [RETURN]
Run Module [FUN.EXE]: ;[RETURN]

No other prompts will appear, and MS-LINK will use the default values (including FUN.MAP for the List file).

<CONTROL-C>
Use the [Ctrl][C] keys to abort the link session at any time. If you type an erroneous response, such as the wrong filename or an
incorrectly spelled filename, you must press [Ctrl][C] to exit MS-LINK then restart MS-LINK. If the error has been typed but you have not
pressed the [RETURN] key, you may delete the erroneous characters with the backspace key, but for that line only.

10.7 Command Prompts

MS-LINK asks you for responses to four text prompts. When you have typed a response to a prompt and pressed [RETURN], the next prompt
appears. When the last prompt has been answered, MS-LINK begins linking automatically without further command. when the link session is
finished, MS-LINK exits to the operating system. When the operating system prompt appears, Ms-LINK has finished successfully. If the link
session is unsuccessful, MS-LINK will display the appropriate error message.

MS-LINK prompts you for the names of Object, Run, and List files, and for Libraries. The prompts are listed in order of appearance. The
default response is shown in square brackets ([]) following the prompt for prompts which can default to preset responses. The object
Modules: prompt has no preset filename response and requires you to type a filename.

Object Modules [.OBJ]:

Type a list of the object modules to be linked. MS-LINK assumes by default that the filename extension is .OBJ. If an object module has
any other filename extension, the extension must be given. Otherwise, the extension may be omitted.

Modules must be separated by plus signs (+).

Remember that MS-LINK loads segments into classes in the order encountered. You can use this information to set the order in which
the object modules will be read by MS-LINK.

Run File [First-Object-filename.EXE]:

Typing a filename will create a file for storing the Run (executable) file that results from the link session. All Run files receive the filename
extension .EXE, even if you specify an extension other than .EXE.

If no response is typed to the 'Run File:' prompt, MS-LINK uses the first filename typed in response to the Object Modules: prompt as the
RUN filename.

Example:

Run File [FUN.EXE]: B:PAYROLL/P

This response directs MS-LINK to create the Run file PAYROLL.EXE on drive B:. Also MS-LINK will pause, which allows you to insert a
new disk to receive the Run file.

List File [Run-Filename.MAP]:

The List file contains an entry for each segment in the input (object) modules. Each entry also shows the addressing in the Run file.

The default response is the Run filename with the default filename extension '.MAP'.

Libraries []:

The valid responses are up to eight library filenames or simply a [RETURN] (A [RETURN] means default library search). Library files
must have been created by a library utility. In default, MS-LINK will assume that the filename extension is .LIB for library files.

Library filenames must be separated by blank space or plus signs (+).

MS-LINK searches library files in the order listed to resolve external references. When it finds the module that defines the external
symbol, MS-LINK processes that module as another object module.

If MS-LINK cannot find a library file on the disk drives, it will display the message:

Cannot find library <library-name> Type new drive letter:

Press the letter for the drive designation (for example, B).

10.8 MS-LINK SWITCHES

The seven MS-LINK switches control various MS-LINK functions. Switches must be typed at the end of a prompt response, regardless of
which method is used to start MS-LINK. Switches may be grouped at the end of any response, or may be scattered at the end of several. If
more than one switch is typed at the end of one response, each switch must be preceded by a forward slash (/).

All switches may be abbreviated. The only restriction is that an abbreviation must be sequential from the first letter through the last typed and
no gaps or transpositions are allowed. Some legal and illegal abbreviations for the /DSALLOCATE switch are as follows:

Legal Illegal

/D /DSL
/DS /DAL
/DSA /DLC
/DSALLOCA /DSALLOCT
/DSALLOCATE

Using the /DSALLOCATE switch tells MS-LINK to load all data at the high end of the Data Segment. Otherwise MS-LINK loads all data at the
low end of the Data Segment. At run time, the DS pointer is set to the lowest possible address to allow the entire DS segment to be used. Use
of the /DSALLOCATE switch in combination with the default load low (that is, the /HIGH switch is not used) premits the user application to
dynamically allocate any available memory below the area specifically allocated with DGroup, yet to remain accessible by the same DS
pointer. This dynamic allocation is needed for Pascal and FOTRAN programs.

Note:

Your application program may dynamically allocate up to 64K bytes (or the actual amount of memory available) less the amount allocated
within DGroup.

/HIGH

Use of the /High switch causes MS-LINK to place the Run file as high as possible in memory. Otherwise, MS-Link places the Run file as
low as possible.

IMPORTANT

Do not use the /High switch with Pascal or FORTRAN programs.

/LINENUMBERS

The /LINENUMBERS switch tells MS-LINK to include in the List file the line numbers and addresses of the source statements in the
input modules. Otherwise, line numbers are not included in the List file.

Note:

Not all compilers produce object modules that contain line number information. In these cases, of course, MS-LINK cannot include line
numbers.

/MAP

/Map directs MS-LINK to list all public (global) symbols defined in the input modules. If /MAP is not given, MS-LINK will list only errors
(including undefined globals).

The symbols are listed alphabetically. For each symbol, MS-LINK lists its value and its segment:offset location in the Run file. The
symbols are listed at the end of the List file.

/PAUSE

The /PAUSE switch causes MS-LINK to pause in the link session when the switch is encountered. Normally, MS-LINK performs the
linking session from beginning to end without stopping. This switch allows the user to swap the disks before MS-LINK outputs the Run
(.EXE) file.

When MS-LINK encounters the /PAUSE switch, it displays the message:

About to generate .EXE file Change disks <hit any key>

MS-LINK resumes processing when the user presses any key.

CAUTION

Do not remove the disk which will receive the List file, or the disk used for the VM.TMP file, if one has been created.

/STACK:<number>

Number represents any positive numeric value (in hexadecimal radix) up to 65536 bytes. If a value from 1 to 511 is typed, MS-LINK will
use 512. If the /STACK switch is not used for a link session, MS-LINK will calculate the necessary stack size automatically.

All compilers and assemblers should provide information in the object modules that allow the linkter to compute the required stack size.

At least one object (input) module must contain a stack allocation statement. If not, MS-LINK will display the following error message:

WARNING: NO STACK SEGMENT

/NO
/NO is short for NO DEFAULT LIBRARY SEARCH. This switch tells MS-LINK to not search the default (product) libraries in the object
modules. For example, if you are linking object modules in Pascal, specifying the /NO switch tells MS-LINK to not automatically search
the library named PASCAL.LIB to resolve external references.

10.9 SAMPLE MS-LINK SESSION

This sample shows you the type of information that is displayed during an MS-LINK session.

In response to the MS-DOS prompt, type:

LINK

The system displayes the following messages and prompts:

MICROSOFT Object Linker V.2.00 (C) Copyright 1982 by Microsoft Inc.

Object Modules [.OBJ]: IO SYSINT <RETURN>
Run File [IO.EXE]: <RETURN> list file [NUL.MAP]: IO /MAP <RETURN>
Libraries [.LIB]: ;<RETURN>

Notes:

1. By specifying /MAP, you get both an alphabetic listing and a chronological listing of public symbols.
2. By responding PRN to the List File: prompt, you can redirect your output to the printer.
3. By specifying the /LINE switch, MS-LINK gives you a listing of all line numbers for all modules. (Note that the /LINE switch can generate a

large volume of output.)
4. By pressing <RETURN> in response to the Libraries: prompt, an automatic library search is performed.

Once MS-LINK locates all libraries, the linker map displays a list of segments in the order of their appearance within the load module. The list
might look like this:

Start Stop Length Name
00000H 009ECH 09EDh CODE
009F0H 01166H 0777H SYSINTSEG

The information in the Start and Stop columns shows the 20-bit hex address of each segment relative to location zero. Location zero is the
beginning of the load module.

The addresses displayed are not the absolute addresses where these segments are loaded. Consult the MS-DOS 2.0 Macro Assembler
Manual for information on how to determine where relative zero is actually located, and also on how to determine the absolute address of a
segment.

Because the /MAP switch was used, MS-LINK displays the public symbols by name and value. For example:

ADDRESS PUBLICS BY NAME

009F:0012 BUFFERS
009F:0005 CURRENT_DOS_LOCATION
009F:0011 DEFAULTDRIVE
009F:000B DEVICE_LIST
009F:0013 FILES
009F:0009 FINAL_DOS_LOCATION
009F:000F MEMORY_SIZE
009F:0000 SYSINIT

ADDRESS PUBLICS BY VALUE

009F:0000 SYSINIT
009F:0005 CURRENT_DOS_LOCATION
009F:0009 FINAL_DOS_LOCATION
009F:000B DEVICE_LIST
009F:000F MEMORY_SIZE
009F:0011 DEFAULTDRIVE
009F:0012 BUFFERS
009F:0013 FILES

10.10 ERROR MESSAGES

All errors cause the link session to abort. After the cause has been found and corrected, MS-LINK must be re-run. The following messages
are displayed by MS-LINK:

Attempt to access data outside of segment bounds, possibly bad object module
There is probably a bad Object file.

Bad numeric parameter
Numeric value is not in digits.

Cannot open temporary file
MS-LINK is unable to create the file VM.TMP because the disk directory is full. Insert a new disk. Do not remove the disk that will receive
the List.MAP file.

Error: dup record too complex
DUP record in assembly language module is too complex. Simplify DUP record in assembly language program.

Error: Fixup offset exceeds field width
An assembly language instruction refers to an address with a short instruction instead of a long instruction. Edit assembly language
source and reassemble.

Input file read error
There is probably a bad Object file

Invalid object module
An object module(s) is incorrectly formed or incomplete (as when assembly is stopped in the middle).

Symbol defined more than once
MS-LINK found two or more modules that define the same symbol.

Program size or number of segments exceeds capacity of linker
The total size may not exceed 384K bytes and the number of segments may not exceed 255.

Requested stack size exceeds 64K
Specify a size greater than or equal to 64K bytes with the /STACK switch.

Segment size exceeds 64K
64K bytes is the addressing system limit.

Symbol table capacity exceeded
Very many and/or very long names were typed, exceeding the limit of approximately 25K bytes.

Too many external symbols in one module
The limit is 256 external symbols per module.

Too many groups
The limit is 10 groups.

Too many libraries specified.
The limit is 8 libraries.

Too many public symbols

The limit is 1024 public symbols.
Too many segments or classes

The limit is 256 (segments and classes being taken together).
Unresolved externals: <list>

The external symbols listed have no defining module among the modules or library files specified.
VM read error

This is a disk error; it is not caused by MS-LINK.
Warning: no stack segment

None of the object modules specified contains a statement allocating stack space, but you typed the /STACK switch.
Warning: segment of absolute or unknown type

There is a bad object module or an attempt has been made to link modules that MS-LINK cannot handle (e.g. an absolute object
module).

Write error in tmp file
No more disk space remains to expand the VM.TMP file.

Write error on run file
Usually, there is not enough disk space for the Run file.

Appendix 11: COMMAND.COM
When MS-DOS is initially loaded the system commands processor, COMMAND.COM is loaded and becomes the resident command line
processor. You can however call the command processor by using, the syntax below:

command [<drive:> <pathname>] [<cttydev>] [/p] [/c <string>] [/e <environment size>]

This command starts a new command processor (the MS-DOS program that contains all internal commands).

The command processor is loaded into memory in two parts: the transient part and the resident part. Some application programs write over
the transient part of COMMAND.COM when they run. When this happens, the resident part of the command processor looks for the
COMMAND.COM file on disk so it can reload the transient part.

The <drive:> <pathname> options tell the command processor where to look for the COMMAND.COM file it it needs to reload the transient part
into memory.

<cttydev> allows you to specify a different device (such as aux) for input and output. See the Ctty command in this chapter for more information.

The /e switch specifies the environment size in bytes. The size may range between 128 and 32768 bytes. The default value is 128 bytes.

If <environment size> is less than 128 bytes, MS-DOS defaults to 128 bytes and gives the message:

Invalid environment size specified

If <environment size> is greater than 32768 bytes, MS-DOS gives the same message, but defaults to 32768 bytes.

The /p switch tells COMMAND.COM not to exit to any higher level.

The /c switch, if used, should be the last switch in the command. It tells the command processor to execute the command or commands
specified by <string> and then return.

Example:

command /c chkdsk b:

This example tells the command processor to:

1. Start a new command processor under the current program.
2. Run the command "chkdsk b:"
3. Return to the first command processor.

Appendix 12: The DEBUG Utility Program (DEBUG)

12.1 INTRODUCTION

The Microsoft DEBUG Utility (DEBUG) is a debugging program that provides a controlled testing environment for binary and executable object
files. Note that EDLIN is used to alter source files; DEBUG is EDLIN's counterpart for binary files. DEBUG eliminates the need to reassmeble
a program to see if a problem has been fixed by a minor change. It allows you to alter the contents of a file or the contents of a CPU register,
and then to immediately re-execute a program to check on the validity of the changes.

All DEBUG commands may be aborted at any time by pressing [Control][C]. [Control][S] suspends the display, so that you can read it before
the output scrolls away. Entering any key other than [Control][C] or [Control][S] restarts the display. All of these commands are consistent with

the control character functions available at the MS-DOS command level.

12.2 HOW TO START DEBUG

DEBUG may be started two ways. By the first method, you type all commands in response to the DEBUG prompt (a hyphen). By the second
method, you type all commands on the line used to start DEBUG.

Summary of Methods to Start DEBUG

Method 1
DEBUG

Method 2
DEBUG [<filespec> [<arglist>]]

12.2.1 Method 1: DEBUG

To start DEBUG using method 1, type:

DEBUG

DEBUG responds with the hyphen (-) prompt, signaling that it is ready to accept your commands. Since no filename has been specified,
current memory, disk sectors or disk files can be worked on by using other commands.

WARNINGS

1. When DEBUG (Version 2.0) is started, it sets up a program header at offset 0 in the program work area. On previous versions of DEBUG,
you could overwrite this header. You can still overwrite the default header if no <filespec> is given to DEBUG. If you are debugging a .COM
or .EXE file, however, do not tamper with the program header below address 5CH, or DEBUG will terminate.

2. Do not restart a program after the message, Program terminated normally is displayed. You must reload a program with the N and L
commands for it to run properly.

12.2.2 Method 1: Command Line

To start DEBUG using a command line, type:

DEBUG [<filespec> [<arglist>]]

For example, if a <filespec> is specified, then the following is a typical command to start DEBUG:

DEBUG FILE.EXE

DEBUG then loads FILE.EXE into memory starting at 100 hexadecimal in the lowest available segment. The BX:CX registers are loaded with
the number of bytes placed into memory.

An <arglist> may be specified if <filespec> is present. The <arglist> is a list of filename parameters and switches that are to be passed to the
program <filespec>. Thus, when <filespec> is loaded into memory, it is loaded as if it had been started with the command:

<filespec> <arglist>

Here, <filespec> is the file to be debugged, and the <arglist> is the rest of the command line that is used when <filespec> is invoked and
loaded into memory.

12.3 COMMAND INFORMATION

Each DEBUG command consists of a single letter followed by one or more parameters. Additionally, the control characters and the special
editing functions described in the MS-DOS User's Guide, apply inside DEBUG.

If a syntax error occurs in a DEBUG command, DEBUG reprints the command line and indicates the error with an up-arrow (↑) and the word
"error."

For example:

dcs:100 cs:110
 ^ Error

Any combination of uppercase and lowercase letters may be used in commands and parameters.

The DEBUG commands are summarized in Table 11.1 and are described in detail, with examples, following the description of command
parameters.

Table 12.1 DEBUG Commands

DEBUG Command Function

A[<address>] Assemble
C<range> [<address>] Compare
D[<range>] Dump
E<address> [<list>] Enter
F<range> <list> Fill
G[= <address> [<address> ...]] Go
H<value> <value> Hex
I<value> Input
L[<address> [<drive:> <record> <record>]] Load
M <range> <address> Move
N <filename> [<filename>] Name
O <value> <byte> Output
Q Quit
R[<register-name>] Register
S<range> <list> Search
T[= <address> [<value>]] Trace
U[<range>] Unassemble
W[<address> [<drive:> <record> <record>]] Write

PARAMETERS

All DEBUG commands accept parameters, except the Quit command. Parameters may be separated by delimiters (spaces or commas), but a
delimiter is required only between two consecutive hexadecimal values. Thus, the following commands are equivalent:

dcs:100 110
d cs:100 110
d,cs:100 110

PARAMETER DEFINITION

<drive>
A one-digit hexadecimal value to indicate which drive a file will be loaded from or written to. the valid values are 0-3. These
values designate the drives as follows: 0=A:, 1=B:, 2=C:, 3=D:.

<byte> A two-digit hexadecimal value to be placed in or read from an address or reigster.

<record>
A 1- to 3-digit hexadecimal value to be used to indicate the logical record number on the disk and the number of disk sectors to
be written or loaded. Logical records correspond to sectors. However, their numbering differs since they represent the entire
disk space.

<value>
A hexadecimal value up to four digits used to serial a port number or the number of times a command should repeat its
functions.

<address>

A two-part designation consisting of either an alphabetic segment register designation or a four-digit segment address plus an
offset value. The segment designation or segment address may be omitted, in which case the default segment is used. DS is
the default segment for all commands except G, L, T, U and W, for which the default segment is CS. All numeric values are
hexadecimal.

For example:

CS:0100
04BA:0100

The colon is required between a segment designation (whether numeric or alphabetic) and an offset.

<range> Two <address>es: e.g., <address> <address>; or one <address>, an L, and a <value> e.g. <address> L <value> where:

<value>

is the number of lines the command should operate on, and L80 is assumed. The last form cannot be used if another hex value
follows the <range>, since the hex value would be interpreted as the second <address> of the <range>.

Examples:

CS:100 110
CS:100 L 10
CS:100

The following is illegal:

CS:100 CS:110
 ^ Error

PARAMETER DEFINITION

The limit for <range> is 10000 hex. To specify a value of <10000> hex within four digits, type 00 (or 0).

<list>

A series of <byte> values or of <string>s. <list> must be the last parameter on the command line.

Example:

fcs:100 42 45 52 54 41

<string>

Any number of characters enclosed in quote marks. Quote marks must be either single (') or double ("). If the delimiter quote
marks must appear within a <string>, the quote marks must be doubled. For example, the following strings are legal:

'This is a "string" is okay.'
'This is a ''string'' is okay.'

However, this string is illegal:

'This is a 'string' is not.'

Similarly, these strings are legal:

"This is a 'string' is okay."
"This is a ""string"" is okay."

However, this string is illegal:

"This is a "string" is not."

Note that the double quote marks are not necessary in the following strings:

"This is a ''string'' is not necessary."
'This is a ""string"" is not necessary.'

The ASCII values of the characters in the string are used as a <list> of byte values.

NAME Assemble
PURPOSEAssembles 8086/8087/8088 mnemonics directly into memory.
SYNTAX A[<address>]

If a syntax error is found, DEBUG responds with

 ̂Error

and re-displays the current assembly address.

All numeric values are hexadecimal and must be entered as 1-4 characters. Prefix mnemonics must be specified in front of the opcode to
which they refer. They may also be entered on a separate line.

The segment override mnemonics are CS:, DS:, ES:, and SS:. The mnemonic for the far return is RETF. String manipulation mnemonics must
explicitly state the string size. For example, use MOVSW to move word strings and MOVSB to move byte strings.

The assembler will automatically assemble short, near or far jumps and calls, depending on byte displacement to the destination address.
These may be overridden with the NEAR or FAR prefix. For example:

0100:0500 JMP 502 ;a 2-byte short jump
0100:0502 JMP NEAR 505 ;a 3-byte near jump
0100:0505 JMP FAR 50A ;a 5-byte far jump

The NEAR prefix may be abbreviated to NE, but the FAR prefix cannot be abbreviated.

DEBUG cannot tell whether some operands refer to a word memory location or to a byte memory location. In this case, the data type must be
explicitly stated with the prefix 1WORD PTR1 or 1BYTE PTR1. Acceptable abbreviations are 1WO1 and 1BY1. For example:

NEG BYTE PTR [128]
DEC WO [SI]

DEBUG also cannot tell whether an operand refers to a memory location or to an immediate operand. DEBUG uses the common convention
that operands enclosed in square brackets refer to memory. For example:

MOV AX,21 ;Load AX with 21H
MOV AX,[21] ;Load AX with the

;contents

;of memory location 21H

Two popular pseudo-instructions are available with Assemble. The DB opcode will assemble byte values directly into memory. The DW
opcode will assemble word values directly into memory. For example:

DB 1,2,3,4,"THIS IS AN EXAMPLE"
DB 'THIS IS A QUOTE:"'
DB "THIS IS A QUOTE:'"
DW 1000,2000,3000,"BACH"

Assemble supports all forms of register indirect commands. For example:

ADD BX,34[BP+2].[SI-1]
POP [BP+DI]
PUSH [SI]

All opcode synonyms are also supported. For example:

LOOPZ 100
LOOPE 100

JA 200
JNBE 200

For 8087 opcodes, the WAIT or FWAIT must be explicitly specified. For example:

FWAIT FADD ST,ST(3) ;This line assembles
;an FWAIT prefix

LD TBYTE PTR [BX] ;This line does not

NAME Compare
PURPOSECompares the portion of memory specified by <range> to a portion of the same size beginning at <address>.
SYNTAX C<range> <address>

If the two areas of memory are identical, there is no display and DEBUG returns with the MS-DOS prompt. If there are differences, they are
displayed in this format:

<address1> <byte1;> <byte2;> <address2>

For example, The following commands have the same effect:

C100,1FF 300

or

C100 L100 300

Each command compares the block of memory from 100 to 1FFH with the block of memory from 300 to 3FFH.

NAME Dump
PURPOSEDisplays the contents of the specified region of memory.
SYNTAX D[<range>]

If a range of addresses is specified, the contents of the range are displayed. If the D command is typed without parameters, 128 bytes are
displayed at the first address (DS:100) after the address displayed by the previous Dump command.

The dump is displayed in two portions: a hexadecimal dump (each byte is shown in hexadecimal value) and an ASCII dump (the bytes are
shown in ASCII characters). Nonprinting characters are denoted by a period (.) in the ASCII portion of the display. Each display line shows 16
bytes with a hyphen between the eighth and ninth bytes. At times, displays are split in this manual to fit them on the page. Each displayed line
begins on a 16-byte boundary.

If you type the command:

dcs:100 10F

DEBUG displays the dump in the following format:

04BA:0100 54 4F 4D 20 53 41 57 59-45 52 24 00 00 09 4E 44 TOM SAWYER$...ND

If you type the following command:

D

The display is formatted as described above. Each line of the display begins with an address, incremented by 16 from the address on the
previous line. Each subsequent D (typed without parameters) displays the bytes immediately following those last displayed.

If you type the command:

DCS:100 L20

the display is formatted as described above, but 20H bytes are displayed.

If then you type the command:

DCS:100 115

the display is formatted as described above, but all the bytes in the range of lines from 100H to 115H in the CS segment are displayed.

NAME Enter
PURPOSEEnters byte values into memory at the specified <address>.
SYNTAX E<address> [<list>]

If the optional <list> of values is typed, the replacement of byte values occurs automatically. (If an error occurs, no byte values are changed.)

If the <address> is typed without the optional <list>, DEBUG displays the address and its contents, then repeats the address on the next line
and waits for your input. At this point, the Enter command waits for you to perform one of the following actions:

1. Replace a byte value with a value you type. Simply type the value after the current value. If the value typed in is not a legal hexadecimal
value, or if more than two digits are typed, the illegal or extra character is not echoed.

2. Press the [SPACEBAR] to advance to the next byte. To change the value, simply type the new value as described in (1.) above. If you
space beyond an 8-byte boundary, DEBUG starts a new display line with the address displayed at the beginning.

3. Type a HYPHEN (-) to return to the preceding byte. If you decide to change a byte behind the current position, typing the hyphen returns
the current position to the previous byte. When the hyphen is typed, a new line is started with the address and its byte value displayed.

4. Press the [RETURN] key to terminate the Enter command. The [RETURN] key may be pressed at any byte position.

For example, assume that the following command is typed:

ECS:100

DEBUG displays:

04BA:0100 EB .

To change this value to 41, type 41 as shown:

04BA:0100 EB.41

To step through the subsequent bytes, press the Spacebar to see:

04BA:0100 EB.41 10. 00. BC.

To change BC to 42:

04BA:0100 EB.41 10. 00. BC.42

Now, realizing that 10 should be 6F, type the hyphen as many times as needed to return to byte 01 (value 10), then replace 10 with 6F:

04BA:0100 EB.41 10. 00. BC.42-
04BA:0102 00.-
04BA:0101 10.6F

Pressing the [RETURN] key ends the Enter command and returns to the DEBUG command level.

NAME Fill
PURPOSEFills the addresses in the <range> with the values in the <list>.
SYNTAX F<range> <list>

If the <range> contains more bytes than the number of values in the <list>, the <list> will be used repeatedly until all bytes in the <range> are
filled. If the <list> contains more values than the number of bytes in the <range>, the extra values in the <list> will be ignored. If any of the
memory in the <range> is not valid (bad or nonexistent), the error wil occur in all succeeding locations.

For example, assume that the following command is typed:

F 04BA:100 L 100 57 4B 57 42 41

DEBUG fills memory locations 04BA:100 through 04BA:1FF with the bytes specified. The five values are repeated until all 100H bytes are filled.

NAME Go
PURPOSEExecutes the program currently in memory.
SYNTAX G[=<address> [<address> ...]]

If only the Go command is typed, the program executes as if the program had run outside DEBUG.

If =<address> is set, execution begins at the address specifed. The equal sign (=) is required, so that DEBUG can distinguish the start
=<address> from the breakpoint <address>es.

With the other optional addresses set, execution stops at the first <address> encountered, regardless of that address's position in the list of
addresses to halt execution or program branching. When program execution reaches a breakpoint, the registers, flags and decoded
instruction are displayed for the last instruction executed. (The result is the same as if you had typed the Register command for the breakpoint
address.)

Up to ten breakpoints may be set. Breakpoints may be set only at addresses containing the first byte of an 8086 opcode. If more than ten
breakpoints are set, DEBUG returns the BP Error message.

The user stack pointer must be valid and have 6 bytes available for this command. The G command uses an IRET instruction to cause a jump
to the program under test. The user stack pointer is set, and the user flags, Code Segment register, and Instruction Pointer are pushed on the
user stack. (Thus, if the user stack is not valid or is too small, the operating system may crash.) An interrupt code (0CCH) is placed at the
specified breakpoint address(es).

When an instruction with the breakpoint code is encountered, all breakpoint addresses are restored to their original instructions.

If execution is not halted at one of the breakpoints, the interrupt codes are not replaced with the original instructions.

For example, assume that the following command is typed:

GCS:7550

The program currently in memory executes up to the address 7550 in the CS segment. DEBUG then displays registers and flags, after which
the Go command is terminated.

After a breakpoint has been encountered, if you type the Go command again, then the program executes just as if you had typed the filename
at the MS-DOS command prompt level. The only difference is that program execution begins at the instruction after the breakpoint rather than
at the usual start address.

NAME Hex
PURPOSEPerforms hexadecimal arithmetic on the two parameters specified.
SYNTAX H<value> <value>

First, DEBUG adds the two parameters, then subtracts the second parameter from the first. The results of the arithmetic are displayed on one
line; first the sum, then the difference.

For example, assume that the following command is typed:

H19F 10A

DEBUG performs the calculations and then displays the result:

02A9 0095

NAME Input
PURPOSEInputs and displays one byte from the port specified by value.
SYNTAX I<value>

A 16-bit port address is allowed.

For example, assume that you type the following command:

I2F8

Assume also that the byte at the port is 42H. DEBUG inputs the byte and displays the value:

42

NAME Load
PURPOSELoads a file into memory.
SYNTAX L<address> [<drive:> <record> <record>]

Set BX:CX to the number of bytes read. The file must have been named either when DEBUG was started or with the N command. Both the
DEBUG invocation and the N command format a filename properly in the normal format of a file control block at CS:5C.

If the L command is typed without any parameters, DEBUG loads the file into memory beginning at address CS:100 and sets BX:CX to the
number of bytes loaded. If the L command is typed with an address parameter, loading begins at the memory <address> specified. If L is
typed with all parameters, absolute disk sectors are loaded, not a file. The <record>s are taken from the <drive:> specified (the drive
designation is numeric here--0=A:, 1=B:, 2=C:, etc.); DEBUG begins loading with the first <record> specified, and continues until the number
of sectors specified in the second <record> have been loaded.

Assume that the following commands are typed:

A>DEBUG
-NFILE.COM

Now, to load FILE.COM, type:

L

DEBUG loads the file and then displays the DEBUG prompt. Assume that you want to load only portions of a file or certain records from a disk.
To do this, type:

L04BA:100 2 0F 6D

DEBUG then loads 109 (6D hex) records, beginning with logical record number 15, into memory beginning at address 04BA:100. When the
records have been loaded, DEBUG simply returns the - prompt.

If the file has a .EXE extension, it is relocated to the load address specified in the header of the .EXE file: the <address> parameter is always
ignored for .EXE files. The header itself is stripped off the .EXE file before it is loaded into memory. Thus the size of an .EXE file on disk will
differ from its size in memory.

If the file named by the Name command or specified when DEBUG is started is a .HEX file, then typing the L command with no parameters
causes DEBUG to load the file beginning at the address specified in the .HEX file. If the L command includes the option <address>, DEBUG
adds the <address> specified in the L command to the address found in the .HEX file to determine the start address for loading the file.

NAME Move
PURPOSEMoves the block of memory specified by <range> to the location beginning at the address specified.
SYNTAX M<range> <address>

Overlapping moves (i.e., moves where part of the block overlaps some of the current addresses) are always performed without loss of data.
Addresses that could be overwritten are moved first. The sequence for moves from higher addresses to lower addresses is to move the data
beginning at the block's lowest address and then to work towards the highest. The sequence for moves from lower addresses to higher
addresses is to move the data beginning at the block's highest address and to work towards the lowest.

Note that if the addresses in the block being moved will not have new data written to them, the data there before the move will remain. The M
command copies the data from one area into another, in the sequence described, and writes over the new addresses. This is why the
sequence of the move is important.

Assume that you type:

MCS:100 110 CS:500

DEBUG first moves address CS:110 to address CS:510, then CS:10F to CS:50F, and so on until CS:100 is moved to CS:500. You should type
the D command, using the <address> typed for the M command, to review the results of the move.

NAME Name
PURPOSESets filenames.
SYNTAX N<filename> [<filename> ...]

The NAME command performs two functions. Firstly, NAME is used to assign a filename for a later Load or Write command. Thus, if you start
DEBUG without naming any file to be debugged, then the N<filename> command must be typed before a file can be loaded. Secondly, NAME
is used to assign filename parameters to the file being debugged. In this case, Name accepts a list of parameters that are used by the file
being debugged.

These two functions overlap. Consider the following set of DEBUG commands:

-NFILE1.EXE
-L
-G

Because of the effects of the NAME command, NAME will perform the following steps:

1. (N)ame assigns the filename FILE1.EXE to the filename to be used in any later Load or Write commands.
2. (N)ame also assigns the filename FILE1.EXE to the first filename parameter used by any program that is later debugged.
3. (L)oad loads FILE1.EXE into memory.
4. (G)o causes FILE1.EXE to be executed with FILE1.EXE as the single parameter (that is, FILE1.EXE is executed as if FILE1.EXE had been

typed at the command level).

A more useful chain of commands might look like this:

-NFILE1.EXE
-L
-NFILE2.DAT FILE3.DAT
-G

Here, Name sets FILE1.EXE as the filename for the subsequent Load command. The Load command loads FILE1.EXE into memory, and
then the Name command is used again, this time to specify the parameters to be used by FILE1.EXE. Finally, when the Go command is
executed, FILE1.EXE is executed as if FILE1 FILE2.DAT FILE3.DAT had been typed at the MS-DOS command level. Note that if a Write
command were executed at this point, then FILE1.EXE--the file being debugged--would be saved with the name FILE2.DAT! To avoid such
undesired results, you should always execute a Name command before either a Load or a Write.

There are four regions of memory that can be affected by the Name command:

CS:5C
FCB for file 1

CS:6C
FCB for file 2

CS:80
Count of characters

CS:81
All characters typed

A File Control Block (FCB) for the first filename parameter given to the Name command is set up at CS:5C. If a second filename parameter is
typed, then an FCB is set up for it beginning at CS:6C. The number of characters typed in the Name command (exclusive of the first character,
"N") is given at location CS:80. The actual stream of characters given by the Name command (again, exclusive of the letter "N") begins at
CS:81. Note that this stream of characters may contain switches and delimiters that would be legal in any command typed at the MS-DOS
command level.

A typical use of the NAME command is:

DEBUG PROG.COM
-NPARAM1 PARAM2/C
-G
-

In this case, the GO command executes the file in memory as if the following command had been typed:

PROG PARAM1 PARAM2/C

Testing and debugging therefore reflect a normal runtime environment for PROG.COM.

NAME Output
PURPOSESends the <byte> specified to the output port specified by <value.>
SYNTAX O<value> <byte>

A 16-bit port address is allowed.

For example, typing:

O2F8 4F

causes DEBUG to output the byte value 4F to output port 2F8.

NAME Quit
PURPOSETerminates the DEBUG utility.
SYNTAX Q

The Q command takes no parameters, and exits DEBUG without saving the file currently being operated on. You are returned to the MS-DOS
command level.

For example, to end the debugging session, type:

Q<Return>

DEBUG has been terminated, and control returns to the MS-DOS command level.

NAME Register
PURPOSEDisplays the contents of one or more CPU registers.

SYNTAX R[<register-name>]

If no <register-name> is typed, the R command dumps the register save area and displays the contents of all registers and flags.

If a register name is typed, the 16-bit value of that register is displayed in hexadecimal, and then a colon appears as a prompt. You then either
type a <value> to change the register, or simply press the [RETURN] key if no change is wanted.

The only valid <register-name>s are:

AX BP SS
BXSI CS
CXDI IP (IP and PC both refer to the Instruction Pointer)
DXDSPC
SPES F

Any other entry for <register-name> results in a br Error message.

If F is entered as the <register-name>, DEBUG displays each flag with a two-character alphabetic code. To alter any flag, type the opposite
two-letter code. The flags are either set or cleared.

The flags are listed below with their codes for SET and CLEAR:

FLAG NAME SET CLEAR

Overflow OV NV

Direction DN Decrement UP Increment

Interrupt EI Enabled DI Disabled

Sign NG Negative PL Plus

Zero ZR NZ

Auxiliary CarryAC NA

Parity PE Even PO Odd

Carry CY NC

Whenever you type the command RF, the flags are displayed in the order shown above in a row at the beginning of a line. At the end of the list
of flags, DEBUG displays a hyphen (-). You may enter new flag values as alphabetic pairs. The new flag values can be entered in any order.
You do not have to leave spaces between the flag entries. To exit the R command, press the [RETURN] key. Flags for which new values were
not entered remain unchanged.

If more than one value is entered for a flag, DEBUG returns a DF Error message. If you enter a flag code other than those shown above,
DEBUG returns a BF Error message. In both cases, the flags up to the error in the list are changed; flags at and after the error are not.

At startup, the segment registers are set to the bottom of free memory, the Instruction Pointer is set to 0100H, all flags are cleared, and the
remaining registers are set to zero.

For example, typing:

R

causes DEBUG to display all registers, flags and the decoded instruction for the current location. If the location is CS:11A, then the display will
look similar to this:

AX=0E00 BX=00FF CX=0007 DX=01FF SP=039D BP=0000
SI=005C DI=0000 DS=04BA ES=04BA SS=04BA CS=O4BA
IP=011A NV UP DI NG NZ AC PE NC
04BA:011A CD21 INT 21

If you type:

RF

DEBUG will display the flags:

NV UP DI NG NZ AC PE NC -

Now, type any valid flag designation, in any order, with or without spaces.

NV UP DI NG NZ AC PE NC -PL EI CY<RETURN>

DEBUG responds only with the DEBUG prompt. To see the changes, type either the R or RF command:

RF
NV UP EI PL NZ AC PE CY -

Press the [RETURN] key to leave the flags this way, or to specify different flag values.

NAME Search
PURPOSESearches the <range> specified for the <list> of bytes specified.
SYNTAX S<range> <list>

The <list> may contain one or more bytes, each separated by a space or comma. If the <list> contains more than one byte, only the first
address of the byte string is returned. If the <list> contains only one byte, all addresses of the byte in the <range> are displayed.

If you type:

SCS:100 110 41

DEBUG displays a response similar to this:

04BA:0104
04BA:010D
-

NAME Trace
PURPOSEExecutes one instruction and displays the contents of all registers and flags, and the decoded instruction.
SYNTAX T[=<address>][<value>]

If the optional =<address> is typed, tracing occurs at the =<address> specified. The optional <value> causes DEBUG to execute and trace the
number of steps specified by <value>

The T command uses the hardware trace mode of the 8086 or 8088 microprocessor. Consequently, you may also trace instructions stored in
ROM (Read Only Memory).

For example if you type:

T

DEBUG returns a display of the registers, flags and decoded instruction for that one instruction. Assume that the current position is
04BA:011A; DEBUG might return the display:

AX=0E00 BX=00FF CX=0007 DX=01FF SP=039D BP=0000
SI=005C DI=0000 DS=04BA ES=04BA SS=04BA CS=O4BA
IP=011A NV UP DI NG NZ AC PE NC
04BA:011A CD21 INT 21

If you type:

T=011A 10

DEBUG executes sixteen (10 hex) instructions beginning at 011A in the current segment, and then displays all registers and flags for each
instruction as it is executed. The display scrolls away until the last instruction is executed. Then the display stops, and you can see the register
and flag values for the last few instructions performed. Remember that [Control][S] suspends the display at any point, so that you can study the
registers and flags for any instruction.

NAME Unassemble
PURPOSEDisassembles bytes and displays the source statements that correspond to them, with addresses and byte values.
SYNTAX U[<range>]

The display of disassembled code looks like a listing for an assembled file. If you type the U command without parameters, 20 hexadecimal
bytes are disassembled at the first address after that displayed by the previous Unassemble command. If you type the U command with the
<range> parameter, then DEBUG disassembles all bytes in the range. If the <range> is given as an <address> only, then 20H bytes are
disassembled.

If you type:

U04BA:100 L10

DEBUG disassembles 16 bytes beginning at address 04BA:0100:

04BA:0100 206472 AND [SI+72],AH
04BA:0103 69 DB 69
04BA:0104 7665 JBE 016B
04BA:0106 207370 AND [BP+DI+70],DH
04BA:0109 65 DB 65
04BA:010A 63 DB 63
04BA:010B 69 DB 69

04BA:010C 66 DB 66
04BA:010D 69 DB 69
04BA:010E 63 DB 63
04BA:010F 61 DB 61

If you type:

U04ba:0100 0108

the display shows:

04BA:0100 206472 AND [SI+72],AH
04BA:0103 69 DB 69
04BA:0104 7665 JBE 016B
04BA:0106 207370 AND [BP+DI+70],DH

If the bytes in some addresses are altered, the disassembler alters the instruction statements. The U command can be typed for the changed
locations, the new instructions viewed, and the disassembled code used to edit the source file.

NAME Write
PURPOSEWrites the file being debugged to a disk file.
SYNTAX W[<address> [<drive:> <record> <record>]]

If you type W with no parameters, BX:CX must already be set to the number of bytes to be written; the file is written beginning from CS:100. If
the W command is typed with just an address, then the file is written beginning at that address. If a G or T command has been used, BX:CX
must be reset before using the Write command without parameters. Note that if a file is loaded and modified, the name, length, and starting
address are all set correctly to save the modified file (as long as the length has not changed).

The file must have been named either with the DEBUG information command or with the N command (refer to the Name command earlier in
this manual). Both the DEBUG invocation and the N command format a filename properly in the normal format of a file control block at CS:5C.

If the W command is typed with parameters, the write begins from the memory address specified; the file is written to the <drive:> specified
(the drive designation is numeric here--0=A:, 1=B:, 2=C: etc.); DEBUG writes the file beginning at the logical record number specified by the
first <record> DEBUG continues to write the file until the number of sectors specified in the second <record> have been written.

Warning

Writing to absolute sectors is EXTREMELY dangerous because the
process bypasses the file handler.

If you type:

NEXAMPLE.DAT
W

and

BX=0001 CX=03B7,

DEBUG displays a message reporting the file size:

Writing 103B7 bytes

Then DEBUG writes the file (EXAMPLE.DAT) to disk and displays the DEBUG prompt (-) when finished.

If you type:

WCS:100 1 37 2B

DEBUG writes out the contents of memory, beginning with the address CS:100 to the disk in drive B:. The data written out starts in disk logical
record number 37H and consists of 2BH records. When the write is complete, DEBUG displays the prompt.

12.5 ERROR MESSAGES

During the DEBUG session, you may receive any of the following error messages. Each error terminates the DEBUG command under which it
occurred, but does not terminate DEBUG itself.

ERROR CODE DEFINITION

BF Bad flag

ERROR CODE DEFINITION

You attempted to alter a flag, but the characters typed were not one of the acceptable pairs of flag values. See the Register command for the
list of acceptable flag entries.
BP Too many breakpoints
You specified more than ten breakpoints as parameters to the G command. Re-type the Go command with ten or fewer breakpoints.
BR Bad register
You typed the R command with an invalid register name. See the Register command for the list of valid register names.
DF Double flag
You typed two values for one flag. You may specify a flag value only once per RF command.

Appendix 13: The EXE2BIN Utility Program
The EXE2BIN utility program converts .EXE (executable) files to BINary format.

SYNTAX
exe2bin [<drive:>]<pathname> [<drive>][<pathname>]

This command is useful only if you want to convert .EXE (executable) files to binary format. The file named by <pathname> is the input file. If no
extension is specified, it defaults to .EXE. The input file is converted to .BIN file format (memory image of the program) and placed in the output
file (second pathname). If you do not specify a drive name, the drive of the input file will be used. If you do not specify a filename extension in
the output filename, the new file will be given an extension of .BIN.

The input file must be in valid .EXE format produced by the linker. The resident, or actual code and data part of the file must be less than 64K.
There must be no STACK segment.

Two kinds of conversions are possible, depending on whether the initial CS:IP (Code Segment: Instruction Pointer) is specified in the .EXE
file:

1. If CS:IP is not specified in the .EXE file, a pure binary conversion is assumed. If segments fixups are necessary (that is, the program
contains instructions requiring segment relocation), you will be prompted for the fixup value. This value is the absolute segment at which
the program is to be loaded. The resultant program will be usable only when loaded at the absolute memory address specified by a
user application. The command processor will not be able to load the program.

2. If CS:IP is 00:100H, it is assumed that the file will run as a .COM file with the location pointer set at 100H by the assembler statement
ORG; the first 100H bytes of the file are deleted. No segment fixups are allowed, as .COM files must be segment relocatable; that is, they
must assume the entry conditions explained in the Microsoft Macro Assembler Manual. Once the conversion is complete, you may
rename the output file with a .COM extension. Then the command processor will be able to load and execute the program in the same
way as the .COM programs supplied on you MS-DOS disk.

MESSAGES:

File cannot be converted
CS:IP does not meet either of the criteria specified above, or it meets the .COM file criterion but has segment fixups. This message is
also displayed if the file is not a valid executable file.

- File not found
- The file is not on the disk specified.

- Insufficient memory
- There is not enough memory to run Exe2bin.

- File creation error
Exe2bin cannot create the output file. Run Chkdsk to determine if the directory is full, or if some other condition caused the error.

- Insufficient disk space
- There is not enough disk space to create a new file.

- Fixups needed - base segment (hex):
The source (.EXE) file contained information indicating that a load segment is required for the file. Specify the absolute segment address
at which the finished module is to be located.

- File cannot be converted.
The input file is not in the correct format.

WARNING - Read error in EXE file. Amount read less than size in header
This is a warning message only. It means that the .EXE header is inconsistent with the size of the file.

Appendix 14: The EXIT Command
The EXIT command exits the program COMMAND.COM (the command processor) and returns to a previous level, if one exists.

SYNTAX
exit

This command can be used when you are running an application program and want to start the MS-DOS command processor, then return to

your program. For example, to look at a directory on drive B while running an application program, you must issue an EXEC of the command
interpreter (system call 4BH). The system prompt will appear. You can now type the Dir command and MS-DOS will display the directory listing.
When you type EXIT, you return to the previous level (your application program).

Appendix 15: The RECOVER Utility Program
The RECOVER utility recovers a file or an entire disk containing bad sectors.

SYNTAX
recover [<drive:>]
or
recover <drive:>[<pathname>]

If a sector on a disk is bad, you can recover either the file containing that sector (without the bad sector) or the entire disk (if the bad sector was
in the directory).

To recover a particular file, type:

recover <filename>

This causes MS-DOS to read the file sector by sector and to skip the bad sector(s). When MS-DOS finds the bad sector(s), the sector(s) are
marked and MS-DOS will no longer allocate your data to that sector.

To recover a disk, type

recover <drive:>

where <drive:> is the letter of the drive containing the disk to be recovered.

MESSAGES:

File not found
MS-DOS cannot find the file that you specified. Check to see that the pathname is accurate and that the file exists in the directory you
specified.

(xxxx) of (xxxx) bytes recovered
This message tells you the number of bytes that MS-DOS was able to recover from the disk.

Warning - directory full
The root directory is too full for Recover processing. Delete some files in the root directory to free space.

Appendix 16: The SHARE Utility Program
The SHARE utility installs file sharing and locking.

SYNTAX
share [/f:<space:>][/L:<locks>]

The SHARE command is only used when networking is active. It is included in the AUTOEXEC.BAT file to install shared files. Refer to the
Microsoft Networks Manager's Guide to learn about shared files.

Use the /f:<space> switch to allocate file space (in bytes) for the area MS-DOS uses to record filesharing information. Each file that is onpen
needs the length of the full filename plus 11 bytes (the average pathname is 20 bytes). The default value for the /f switch is 2048 bytes.

The L:<locks> switch allocates the number of locks you want to allow. The default value for the /L switch is 20 locks.

Once you have used the SHARE command in an MS-DOS session, all read and write requests are checked by MS-DOS.

For example, the following example loads file sharing and uses the default values for the /f and /L switches:

share

SHARE messages:

- Incorrect parameter
One of the options you specified is wrong.

- Not enough memory
There is not enough memory for MS-DOS to run the command.

- Share Already Installed
You can install Share only once.

Section 3 Site Index Book Index

Appendices Site Index

INDEX

1234h 99, 167
24 Hour Flag 154, 167
32.768 Khz Oscillator 15
320 x 200 Graphics 25
640 x 200 Graphics Mode 26
640 x 350 Graphics Mode 27
8087-2 Numeric Data Processor 1, 136

Absolute Key Token 109, 164
ACE (8250) Registers 176
Active Video Display page 166
AMSTRAD PC 640K (Vv.i) message 171
Asynchronous Communications Element test 101
Attribute Byte (Color) 22
Attribute Byte (Monochrome) 24
Attribute Controller Address Register 35
Attribute Controller 35

Bad Sector Markers 141, 142
Baud Rate Selector 144
Break Byte 109, 166
BREAK Command 220
BUFFERS Command 221

Central Processing Unit (CPU) 1
Centronics Compatible Port 16
Centronics Interface Connector 79
CGA Color Select Register 66
CGA CRTC Display Addressing 68
CGA Mode 6845 CRTC Emulation 67
CGA Mode Control Register 64
CGA Status Register 67
Character Plane Mapping 42
Character set A/B Select 22, 40, 41
Character set Select Register 40
Check keyboard and mouse 171
Clock Mode Register 39
Color Alpha Display 21
Color Graphics Adpater Compatible Registers 64

Color Graphics Display 24
Color No Care Register 48
Color Plane Compare Register 44
Color Plane Enable Register 37
Color Plane Read Register 46
Color Plane Select Register 39
COMMAND.COM 264
Counter 1 initialisation 10
Country Dependent Information 226
CRC Error 137
CRTC Initialisation Data 159
CRTC Mode Register 60, 64
CRTC Offset Register 59
CRTC Overflow Register 53
Ctrl " [Keys]: Key Actions 108
Current Video Color Select byte 166
Current Video Mode Byte 165
Current Video Mode Control Byte 166
Cursor Address Buffer 166
Cursor End Byte 166
Cursor End Register 55
Cursor Location Low Register 56
Cursor Location High Register 56
Cursor Start Register 54
Cursor Start Scan Byte 166

Danish Keyboard 244
Danish ROS Messages 173
Data Rotate Register 45
DDM 12, 92, 136
DEBUG Utility Program 265
Default Video Mode 12, 92, 136
DEVICE Command 221
Diagnostic Mode 19, 173
Direct memory Access Controller test 100
Direct memory Access 5
Disk Bootstrap Interrupt 153
Disk Controller Error 137, 141
Disk I/O Interrupt 137, 140
Disk Parameter Table 160
Disk Write Protect Error 137
Display Selector Switch Settings 91
DMA Controller (8237A-4) Registers 179
DMA Initialisation 7
DMA over 64K boundary (Disk I/O Error) 137, 141

DMA Overrun Error 137
DMA Page Registers 6
DMA 5
Dot Clock Rate 39
Drive Motor Flag 165
Drive Motor Timeout Counter 165
Drive Not Ready 141
Drive Restore Flag 164
Drive Status Byte 165
DRIVER.SYS 222
DRIVPARM Command 223
Dynamic RAM Refresh 9

ECC Error 141
EGA Compatible Video I/O 121
EGA CRTC Address Register 50
EGA CRTC Mode Register 60
EGA Horizontal Display End Register 50
EGA Horizontal Total Register 50
EGA Mode Compatible Registers 31
EGA Mode CRT Controller Registers 49
EGC Control Register 33
EGC External Control Registers 33
EGC Status Register 34
Enable Set/Reset Register 44
End Horizontal Blanking Register 51
End Horizontal Retrace Register 52
Enable Set/Reset Register 44
End of Track 160
End Vertical Blanking Register 60
End Vertical Retrace Register 57
English ROS Messages 19, 170, 173
Enhanced Function Interrupt 147
Enter Key Translation token 169
Error: External ROM checksum incorrect 98, 171
Error: Faulty ... 172
EXE (Run File) 247, 251
EXE2BIN Utility Program 290
EXIT Command 291
Expansion Bus I/O Channels 4
Expansion Card Connector 88
Expansion Card Interface 86
Extended Graphics Border Register 37
Extended Mode Control Register 29
External Cluster Controllers 5

External Ticker Interrupt 158
Extra RAM size 163

Fatal ROS Messages 172
FCBS Command 224
FDC (uPD765A) registers 191
FDC Command Codes 195
FDC Hardware Conditions 76
FDC Results Buffer 165
FILES Command 225
Filler Byte 161
Firmware 93
Floppy Disk Controller 76
Floppy Disk I/O Interrupt 137
Floppy Disk Interface test 102
Format Bad Track 141
Format Drive 141
Format Track 139, 141
Forward Delete Key translation token 169
French Keyboard 242
French ROS Messages 173

Gap Length 160
German Keyboard 242
German ROS Messages 173
Get Cursor Address 114, 124
Get Key Token (Keyboard I/O Interrupt) 149
Get Light Pen Address 114, 124
Get RTC Date 156
Get RTC Time 155
Get System Clock 154
Get Video Parameters 121, 131
Graphics Controller Address 43
Graphics Controller Registers 42
Graphics Mode Register 1 47
Graphics Mode Register 2 48
Greek Keyboard 245

Hard Disk Call parameters and registers 140
Hard Disk Drive Count 167
Hard Disk I/O Interrupt 137, 140
Hard Disk ROM 2, 3, 140, 174
Head Load Delay 160
Head Settling Delay 161
Hercules 6845 CRTC Emulation 74

Hercules Compatible Register Emulation 71
Hercules Mode Control Register 71
Hercules Mode Register 30
Hercules Monochrome Graphics 72
Hercules Status Register 74
High Resolution (640 x 350) Graphics Mode 26
Horizontal Panning Register 38
Horizontal Total 50, 68, 74, 159

IGA BIOS EGA Mode Initialization 63
IGA Interrupt 16: 'EGA Compatible' Video I/O 121
IGA BIOS Modes 27
IGA Control Registers 28
IGA Extended Mode Control Register 29
IGA ROM Fonts 2, 174
Initial Serial Setup Bytes (NVR) 169
Initialization Stack 162
Initialize disk sub-system 138, 141
Initialize printer port 152
Initialize Serial Port 144
Insert a System disk into drive A 98, 153, 171
Installed RAM Size 13
Internal Graphics Adapter 19
Interrupt 2: Parity Error (NMI) 102
Interrupt 5: Print Screen 103
Interrupt 6: Mouse Button Control 103
Interrupt 8: System Clock Interrupt 104
Interrupt 9: Keyboard Interrupt 105
Interrupt 14: Floppy Disk Controller 110
Interrupt 16: Video I/O 111, 121
Interrupt 17: System Configuration 136
Interrupt 18: Memory Size 136
Interrupt 19: Disk I/O 137
Interrupt 20: Serial I/O 143
Interrupt 21: Enhanced Function Interrupt 147
Interrupt 22: Keyboard I/O 149
Interrupt 23: Printer I/O 151
Interrupt 24: System Restart 153
Interrupt 25: Disk Bootstrap 153
Interrupt 26: System Clock and RTC 154
Interrupt 27: Keyboard Break Interrupt 158
Interrupt 28: External Ticker Interrupt 158
Interrupt 29: Video Parameter Table 159
Interrupt 30: Disk Parameter Table 160
Interrupt 31: Video Matrix Table 161

Interrupt 51: Mouse I/O 208
Interrupt Controller Initialisation 8
Interrupt Levels 8, 9, 96
Interrupt Vector Initialisation 96
Introduction 1
Invalid FDC Opcodes 208
IRGB Color Selection 20, 22
Italian Keyboard 242
Italian ROS Messages 173

Key Codes 81, 105, 174, 240
Key States 150, 163
Key Toggles 150, 163
Key Token Buffer End Address 168
Key Token Buffer Start Address 168
Key Token Buffer 164
Key Tokens 105 - 108
Keyboard and Key Codes 174, 240
Keyboard Break Interrupt 158
Keyboard Buffer status 150
Keyboard I/O Interrupt 81
Keyboard Interface test 102
Keyboard Interface 80
Keyboard Interrupt 105
Keyboard Keycodes 240
Keyboard Layouts 241
Keyboard to Main Board Interface 80
Kill RTC Alarm 158

Language Links 172
LASTDRIVE Command 225
LIB (Library Files) 251
Light Pen Connector 85
Light Pen High Register 58
Light Pen Low Register 58
Line Compare Register 61
Linker Program 247
Load Character Generator 132
Logical Printer Device Base I/O Address 62
Logical Printer Device Timeout Buffer 167
Logical Serial Device Base I/O Address 162
Logical Serial Device Timeout Buffer 168
Low Resolution (320 x 200) Graphics 25

Main Board I/O Channels 3

Main Board to Keyboard Interface 80
MAP (Link Map File) 251
Maximum Scan Line Register 45
MC6845 Compatible Video I/O 111
MDA 6845 CRTC Emulation 70
MDA Compatible Registers 69
MDA Mode Control Register 69
MDA Status Register 70
Medium Resolution (320 x 200) Graphics Mode 26
Memory Layout 2
Memory Size Interrupt 136
Missing Address mark 137, 141
Mode Control Register 36
Monochrome Alpha Display 23
Motor off timeout 160
Motor on Delay 161
Mouse Button Control interrupt 103
Mouse Connector 82
Mouse Cursor 210
Mouse Interface 82
Mouse Software Interfaces 208
Mouse X and Y Count Register test 101
Mouse X and Y direction scaling factors (NVR) 169
MS-DOS System Configuration 220
MS-LINK 247

NDP 1, 136
NMI Disable 11
NMI Mask Control 8
Non-Fatal ROS Messages 171
Non-Volatile RAM 148, 169, 187
Norwegian Keyboard 246
Null Modem Cable 234
Number of Printers Attached 136
Number of Serial Interfaces Attached 136
NVR 148, 169, 187

OBJ (Object File) 251
Optional Games Adapter 136
Overscan Register 37

Palette Registers 20, 36
Paper Out 151
Parallel Printer Interface 78
Parallel Printer Port 16

Parity Error (NMI) 102
Parity Error Disable 11
PC1512/1640 Type Determination 17
PC1640 Power Usage 237
PIC (8259A-2) Command Words 182
PIT (8253) Registers 185
Pixel to Bit Mapping (320 Res) 26
Pixel to Bit Mapping (640 Res) 27
Plantronics Mode Register 31
Please fit new batteries 171
Please Wait 99, 170
Port A - Status-1 Input/Keyboard Code 12
Port B - System Control 11
Port C - Status-2 Input 12
Portugese Keyboard 245
Power Connector 90
Power-Up Initialisation and Self Test 94
Power-Up Self Tests 98
Power-Up Test Methods 100
Power-Up Test Procedure 99
Preset Row Sccan Register 53
Print Screen Status Byte 168
Print Screen 103
Printer Acknowledge 151
Printer Connector 79
Printer Control Latch 17
Printer Data Latch 16
Printer I/O Interrupt 151
Printer Idle 151
Printer Lead Wiring 236
Printer Parallel Port test 101
Printer Selected 151
Printer Status Channel 18
Processor Memory Usage 2, 173
Programmable Interrupt Controller test 102
Programmable Interval Timer test 100
Programmable Interval Timers 8
Programmable Peripheral Interface test 101

RAM0 - RAM4 13
RAMDRIVE.SYS 223
Read and Reset Mouse X and Y Counts 147
Read Character and Attributes 116, 126
Read NVR Location 148
Read Pixel (Video Int 16) 120, 129

Read Sectors 138, 141
Read Serial Port 145
Real Time Clock test 101
Real Time Clock 15
Record Not Found (Disk I/O Error) 137
RECOVER Utility Program 292
Reference Information 172
Resident Operating System ROM 2
Return Disk I/O Status 138, 141
Return EGC State 134
Return Key Toggle and Key States 150
Return printer port status 152
rgbRGB (16/64) Color 21, 23
ROM Character Set 238
ROM Firmware Interrupts 96, 102
ROS Checksum Test 100
ROS Interrupt 16: '6845 Compatible' Video I/O 111
ROS Messages 170
RS232 Connections 227
RS232C Asynchronous Serial Port 77
RTC (HD146818) Registers 185

Scroll Screen Down 116, 125
Scroll Screen Up 115, 125
Second Floppy Disk Drive 14
Sector Size 160
Seek Error 137, 141
Send character to the printer port 39
Sequencer Address Register 39
Sequencer Registers 38
Serial Baud Rate Settings 144
Serial Channel Interface 77
Serial Channel Pin Arrangement 78
Serial Clock and Serial Data 80
Serial Connector 78
Serial I/O Interrupt 143
Serial Parity Settings 144
Serial Port Status 146
Serial Stop Bit Settings 144
Set Cursor Address 113, 124
Set Cursor Size 113, 123
Set Display Page 115, 125
Set Palette Registers (Video Int 16) 131
Set PrtSc Vector 134
Set RTC Alarm 157

Set RTC Date 157
Set RTC Time 156
Set System Clock 155
Set Video Mode 112, 122
SHARE Utility Program 293
SHELL Command 225
Size of Ram Disk 169, 223
Soft Reset 108
Spanish Keyboard 243
Spanish ROS Messages 173
Speaker Drive & Modulate 11
Special IGA Registers 11
Special Key Actions 108
STACKS Command 226
Start Address High Register 55
Start Address Low Register 56
Start Horizontal Blanking Register 51
Start Horizontal Retrace Register 52
Start Vertical Blanking Register 59
Start Vertical Retrace Register 57
Status PORT Register 62
Status Register 34, 67, 70, 74
Status-1 Input/Keyboard Code 12
Status-2 Input 12
Step rate 160
SW1 - SW4 Status Read 35
SW6, SW7, SW9 & SW10 Status Read 17
Swedish Keyboard 244
Swedish ROS Messages 173
System Clock and RTC Interrupt 154
System Clock Interrupt 104
System Clock Long Word 154, 167
System Commands Processor 264
System Configuration Interrupt 136
System Configuration Word 136
System Control Port 11
System Interrupts 7
System Memory 2
System RAM test 101
System RAM Variables 161,-,174
System Reset Flag 99, 167
System Reset 15
System Restart Interrupt 153
System Status and Control 10

Then press any key. 98, 153, 171
Time and Date of last usage 169, 171
Time and Date parameters 169, 186
Timer Configuration 10
Total RAM Size 163

UK Keyboard 241
Underline Location Register 59
USA Keyboard 241

Verify Sectors 139, 141
Vertical Display End Register 58
Vertical Interrupt (IRQ2) 57
Vertical Total Register 53
Vertical Total 50, 68, 75, 159
Video AND, OR, XOR, Select 45
Video Buffer Origin & Size 28
Video Connector 89
Video Display Buffer Size Word 165
Video Display Buffer Start Address 165
Video I/O Address Word 166
Video I/O Interrupt 111, 121
Video Matrix Table 161
Video Output Pins 36
Video Parameter Table 159
Video Read/Write Mode 47
Video Screen Buffer 2
Video Status MUX 38
Visible Video Columns Byte 165
VM.TMP 251

Wait States 1
Write Character and Attributes 117, 127
Write Character Only 118, 128
Write Color Palette (Video Int 16) 128
Write Select Register (Video Int 16) 119
Write in TTY emulation mode 120, 130
Write Mask Register 49
Write NVR Location 148
Write Pixel (Video Int 16) 119, 129
Write Sectors 139, 141
Write Serial Port 145
Write System Status 14

Appendices Site Index

	PC1640 Technical Reference Manual
	http://www.seasip.info/AmstradXT/1640tech/
	Preface
	Table of Contents
	Section 1
	Section 2
	Section 3
	Appendices
	Index

